Answer
Verified
380.7k+ views
Hint: We know that wavelength emitted due to transition of electrons is predicted by using Rydberg formula. It is basically a mathematical way to represent wavelength due to the travelling of electrons between energy levels of an atom. The transition mainly occurs due to absorption of electromagnetic radiation.
Complete answer:
Now, let us consider Rydberg formula to solve this problem
Where the wavelength can be determined as:
$ \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_b}}} - \dfrac{1}{{{n_i}}}} \right) $ where, $ \lambda = $ wavelength, $ R = $ Rydberg constant, $ {n_b} = $ lower energy level $ {n_i} = $ higher energy level.
$ R $ is given as $ R = \dfrac{{{m_e}.{e^4}}}{{8{\varepsilon _0}c{h^3}}} $ where $ {m_e} $ is mass of electron, $ e = $ elementary charge, $ {\varepsilon _0} = $ permittivity of vacuum, $ c = $ speed of light in vacuum, $ h = $ planck's constant
It is given that electrons have the same charge so $ e $ will be constant, other elements in the formula are also constant such as $ h,{\varepsilon _0},c $ .
So we can say that Rydberg constant $ R \propto {m_e} $
It is given that $R' = 2R $
When we are talking about first excited state the electrons jump from second excited state to first and we will have to find out only one wavelength
So let us find out
For wavelength we have lower energy level two and higher energy level three which means $ {n_b} = 2,{n_i} = 3 $ and as given in question $ R' = 2R $
$
\dfrac{1}{\lambda } = 2R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
= 2R\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right) \\
\dfrac{1}{\lambda } = \dfrac{{5R}}{{18}} \\
\lambda = \dfrac{{18}}{{5R}} \\
$ H
We have got this value in given option
Hence, the correct option is C.
Note:
Here, $ {n_i} $ will always be greater than $ {n_b} $ . For calculating wavelengths of spectral lines in any chemical element Rydberg’s formula is used which is based upon Bohr’s atomic model which explains the atomic spectrum of hydrogen and other atoms, ions.
Complete answer:
Now, let us consider Rydberg formula to solve this problem
Where the wavelength can be determined as:
$ \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_b}}} - \dfrac{1}{{{n_i}}}} \right) $ where, $ \lambda = $ wavelength, $ R = $ Rydberg constant, $ {n_b} = $ lower energy level $ {n_i} = $ higher energy level.
$ R $ is given as $ R = \dfrac{{{m_e}.{e^4}}}{{8{\varepsilon _0}c{h^3}}} $ where $ {m_e} $ is mass of electron, $ e = $ elementary charge, $ {\varepsilon _0} = $ permittivity of vacuum, $ c = $ speed of light in vacuum, $ h = $ planck's constant
It is given that electrons have the same charge so $ e $ will be constant, other elements in the formula are also constant such as $ h,{\varepsilon _0},c $ .
So we can say that Rydberg constant $ R \propto {m_e} $
It is given that $R' = 2R $
When we are talking about first excited state the electrons jump from second excited state to first and we will have to find out only one wavelength
So let us find out
For wavelength we have lower energy level two and higher energy level three which means $ {n_b} = 2,{n_i} = 3 $ and as given in question $ R' = 2R $
$
\dfrac{1}{\lambda } = 2R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
= 2R\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right) \\
\dfrac{1}{\lambda } = \dfrac{{5R}}{{18}} \\
\lambda = \dfrac{{18}}{{5R}} \\
$ H
We have got this value in given option
Hence, the correct option is C.
Note:
Here, $ {n_i} $ will always be greater than $ {n_b} $ . For calculating wavelengths of spectral lines in any chemical element Rydberg’s formula is used which is based upon Bohr’s atomic model which explains the atomic spectrum of hydrogen and other atoms, ions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE