
Imagine an atom made up of a proton and a hypothetical particle of double the mass of the electron but having the same charge as the electron. Apply the Bohr atomic model and consider all the possible transitions of this hypothetical particle to the first excited level. The largest wavelength photon that will be emitted has wavelength $ \lambda $ (given in the terms of the Rydberg constant $ R $ for the hydrogen atom) is equal to:
Option:
(A) $ \dfrac{9}{{5R}} $
(B) $ \dfrac{{36}}{{5R}} $
(C) $ \dfrac{{18}}{{5R}} $
(D) $ \dfrac{4}{R} $
Answer
514.8k+ views
Hint: We know that wavelength emitted due to transition of electrons is predicted by using Rydberg formula. It is basically a mathematical way to represent wavelength due to the travelling of electrons between energy levels of an atom. The transition mainly occurs due to absorption of electromagnetic radiation.
Complete answer:
Now, let us consider Rydberg formula to solve this problem
Where the wavelength can be determined as:
$ \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_b}}} - \dfrac{1}{{{n_i}}}} \right) $ where, $ \lambda = $ wavelength, $ R = $ Rydberg constant, $ {n_b} = $ lower energy level $ {n_i} = $ higher energy level.
$ R $ is given as $ R = \dfrac{{{m_e}.{e^4}}}{{8{\varepsilon _0}c{h^3}}} $ where $ {m_e} $ is mass of electron, $ e = $ elementary charge, $ {\varepsilon _0} = $ permittivity of vacuum, $ c = $ speed of light in vacuum, $ h = $ planck's constant
It is given that electrons have the same charge so $ e $ will be constant, other elements in the formula are also constant such as $ h,{\varepsilon _0},c $ .
So we can say that Rydberg constant $ R \propto {m_e} $
It is given that $R' = 2R $
When we are talking about first excited state the electrons jump from second excited state to first and we will have to find out only one wavelength
So let us find out
For wavelength we have lower energy level two and higher energy level three which means $ {n_b} = 2,{n_i} = 3 $ and as given in question $ R' = 2R $
$
\dfrac{1}{\lambda } = 2R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
= 2R\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right) \\
\dfrac{1}{\lambda } = \dfrac{{5R}}{{18}} \\
\lambda = \dfrac{{18}}{{5R}} \\
$ H
We have got this value in given option
Hence, the correct option is C.
Note:
Here, $ {n_i} $ will always be greater than $ {n_b} $ . For calculating wavelengths of spectral lines in any chemical element Rydberg’s formula is used which is based upon Bohr’s atomic model which explains the atomic spectrum of hydrogen and other atoms, ions.
Complete answer:
Now, let us consider Rydberg formula to solve this problem
Where the wavelength can be determined as:
$ \dfrac{1}{\lambda } = R\left( {\dfrac{1}{{{n_b}}} - \dfrac{1}{{{n_i}}}} \right) $ where, $ \lambda = $ wavelength, $ R = $ Rydberg constant, $ {n_b} = $ lower energy level $ {n_i} = $ higher energy level.
$ R $ is given as $ R = \dfrac{{{m_e}.{e^4}}}{{8{\varepsilon _0}c{h^3}}} $ where $ {m_e} $ is mass of electron, $ e = $ elementary charge, $ {\varepsilon _0} = $ permittivity of vacuum, $ c = $ speed of light in vacuum, $ h = $ planck's constant
It is given that electrons have the same charge so $ e $ will be constant, other elements in the formula are also constant such as $ h,{\varepsilon _0},c $ .
So we can say that Rydberg constant $ R \propto {m_e} $
It is given that $R' = 2R $
When we are talking about first excited state the electrons jump from second excited state to first and we will have to find out only one wavelength
So let us find out
For wavelength we have lower energy level two and higher energy level three which means $ {n_b} = 2,{n_i} = 3 $ and as given in question $ R' = 2R $
$
\dfrac{1}{\lambda } = 2R\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
= 2R\left( {\dfrac{1}{4} - \dfrac{1}{9}} \right) \\
\dfrac{1}{\lambda } = \dfrac{{5R}}{{18}} \\
\lambda = \dfrac{{18}}{{5R}} \\
$ H
We have got this value in given option
Hence, the correct option is C.
Note:
Here, $ {n_i} $ will always be greater than $ {n_b} $ . For calculating wavelengths of spectral lines in any chemical element Rydberg’s formula is used which is based upon Bohr’s atomic model which explains the atomic spectrum of hydrogen and other atoms, ions.
Recently Updated Pages
Industrial preparation of nitric acid by Ostwalds process class 12 chemistry CBSE

Image of an object at infinity is formed by a convex class 12 physics CBSE

Maximum iron filings stick to the middle of a bar magnet class 12 physics CBSE

What is the difference between anisogamy and oogam class 12 biology CBSE

With a neat labelled diagram explain the formation class 12 physics CBSE

Which of the following is a secondary radical a CH2CH class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

