
If\[f\left( x \right) = \int_a^x {{t^3}{e^t}dt} \], then find the value of\[\dfrac{d}{{dx}}f\left( x \right)\].
A. \[{e^x}\left( {{x^3} + 3{x^2}} \right)\]
B. \[{x^3}{e^x}\]
C. \[{a^3}{e^a}\]
D. None of these
Answer
233.1k+ views
Hint: In this question, we are given an integral as\[f\left( x \right) = \int_a^x {{t^3}{e^t}dt} \]. First, we will evaluate the given integral by using the identity\[\int_a^x {f\left( x \right)dx} = \int_a^0 {f\left( x \right)dx} + \int_0^x {f\left( x \right)dx} \].
After that, we will integrate by parts \[\int {fg' = fg - } \int {f'g} \]
Now, we will integrate from -1 to 0 and then from 0 to 1. At last, we will put the limits value to get the final result.
Finally we will find the derivative of resultant value of the function\[f\left( x \right)\]with respect to\[x\].
Formula Used:We will use the following formulas to solve the given problems:
1) \[\int_a^b {f\left( x \right)dx = } \int_a^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} ,\left( {a < c < b} \right)\]
2) \[\int {fg' = fg - } \int {f'g} \]
Complete step by step solution:We have been given\[f\left( x \right) = \int_a^x {{t^3}{e^t}dt} \].
First, we will evaluate the given integral by using the identity\[\int_a^x {f\left( x \right)dx} = \int_a^0 {f\left( x \right)dx} + \int_0^x {f\left( x \right)dx} \].
\[f\left( x \right) = \int_a^0 {{t^3}{e^t}dt} + \int_0^x {{t^3}{e^t}dt} \]
\[ \Rightarrow f\left( x \right) = {I_1} + {I_2}\] ……… (1)
We will integrate\[{I_1}\]and \[{I_2}\]by parts: \[\int {fg' = fg - } \int {f'g} \]
For\[{I_1}\]:\[f = {t^3}\],\[f' = 3{t^2}\], \[g = {e^t}\],\[g' = {e^t}\]
\[{I_1} = {t^3}{e^t} - \int {3{t^2}{e^t}dt} \]
Again integrate \[\int {3{t^2}{e^t}dt} \]by parts.
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {\int {{t^2}{e^t}dt} } \right]\]
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - \int {2t{e^t}dt} } \right]\]
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - 2\int {t{e^t}dt} } \right]\]
We will again integrate this\[\int {t{e^t}dt} \]by parts.
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - 2\left( {t{e^t} - \int {{e^t}dt} } \right)} \right]\]
As we know that\[\int {{e^t}dt} = \dfrac{{{e^t}}}{{\ln \left( e \right)}} = {e^t}\], then we get
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - \left( {2t{e^t} - 2{e^t}} \right)} \right]\]
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t} + C\]
\[ \Rightarrow {I_1} = \left( {{t^3} - 3{t^2} + 6t - 6} \right){e^t} + {C_1}\]
When we integrate from \[a\] to\[0\], we get
\[ \Rightarrow {I_1} = - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + {C_1}\]
Similarly, we will integrate \[{I_2}\]by parts: \[\int {fg' = fg - } \int {f'g} \]
\[ \Rightarrow {I_2} = \left( {{t^3} - 3{t^2} + 6t - 6} \right){e^t} + {C_2}\]
When we integrate from \[0\] to\[x\], we get
\[ \Rightarrow {I_2} = \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + {C_2}\]
We will further substitute the values of \[{I_1}\]and \[{I_2}\]in equation 1 to get
\[ \Rightarrow f\left( x \right) = - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + {C_1} + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + {C_2}\]
As we can write\[{C_1} + {C_2} = C\]
\[ \Rightarrow f\left( x \right) = - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + C\]
Finally we will find the derivative of function\[f\left( x \right)\]with respect to\[x\].
\[\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ { - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + C} \right]\]
By using chain rule\[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u\dfrac{d}{{dx}}\left( v \right) + v\dfrac{d}{{dx}}\left( u \right)\], we get
\[\begin{array}{l}\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \left( { - {a^3} + 3{a^2} - 6a + 6} \right)\dfrac{d}{{dx}}\left( {{e^a}} \right) + {e^a}\dfrac{d}{{dx}}\left( { - {a^3} + 3{a^2} - 6a + 6} \right) + \left( {{x^3} - 3{x^2} + 6x - 6} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)\\ + {e^x}\dfrac{d}{{dx}}\left( {{x^3} - 3{x^2} + 6x - 6} \right)\end{array}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \left( { - {a^3} + 3{a^2} - 6a + 6} \right)\left( 0 \right) + {e^a}\left( 0 \right) + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + {e^x}\left( {3{x^2} - 6x + 6} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = {x^3}{e^x} - 3{x^2}{e^x} + 6x{e^x} - 6{e^x} + 3{x^2}{e^x} - 6x{e^x} + 6{e^x}\]
After further simplification, we get
\[\dfrac{d}{{dx}}f\left( x \right) = {x^3}{e^x}\]
As a result, the value of\[\dfrac{d}{{dx}}f\left( x \right)\]is\[{x^3}{e^x}\].
Option ‘B’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly \[x\] to\[a\]. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
After that, we will integrate by parts \[\int {fg' = fg - } \int {f'g} \]
Now, we will integrate from -1 to 0 and then from 0 to 1. At last, we will put the limits value to get the final result.
Finally we will find the derivative of resultant value of the function\[f\left( x \right)\]with respect to\[x\].
Formula Used:We will use the following formulas to solve the given problems:
1) \[\int_a^b {f\left( x \right)dx = } \int_a^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} ,\left( {a < c < b} \right)\]
2) \[\int {fg' = fg - } \int {f'g} \]
Complete step by step solution:We have been given\[f\left( x \right) = \int_a^x {{t^3}{e^t}dt} \].
First, we will evaluate the given integral by using the identity\[\int_a^x {f\left( x \right)dx} = \int_a^0 {f\left( x \right)dx} + \int_0^x {f\left( x \right)dx} \].
\[f\left( x \right) = \int_a^0 {{t^3}{e^t}dt} + \int_0^x {{t^3}{e^t}dt} \]
\[ \Rightarrow f\left( x \right) = {I_1} + {I_2}\] ……… (1)
We will integrate\[{I_1}\]and \[{I_2}\]by parts: \[\int {fg' = fg - } \int {f'g} \]
For\[{I_1}\]:\[f = {t^3}\],\[f' = 3{t^2}\], \[g = {e^t}\],\[g' = {e^t}\]
\[{I_1} = {t^3}{e^t} - \int {3{t^2}{e^t}dt} \]
Again integrate \[\int {3{t^2}{e^t}dt} \]by parts.
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {\int {{t^2}{e^t}dt} } \right]\]
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - \int {2t{e^t}dt} } \right]\]
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - 2\int {t{e^t}dt} } \right]\]
We will again integrate this\[\int {t{e^t}dt} \]by parts.
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - 2\left( {t{e^t} - \int {{e^t}dt} } \right)} \right]\]
As we know that\[\int {{e^t}dt} = \dfrac{{{e^t}}}{{\ln \left( e \right)}} = {e^t}\], then we get
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3\left[ {{t^2}{e^t} - \left( {2t{e^t} - 2{e^t}} \right)} \right]\]
\[ \Rightarrow {I_1} = {t^3}{e^t} - 3{t^2}{e^t} + 6t{e^t} - 6{e^t} + C\]
\[ \Rightarrow {I_1} = \left( {{t^3} - 3{t^2} + 6t - 6} \right){e^t} + {C_1}\]
When we integrate from \[a\] to\[0\], we get
\[ \Rightarrow {I_1} = - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + {C_1}\]
Similarly, we will integrate \[{I_2}\]by parts: \[\int {fg' = fg - } \int {f'g} \]
\[ \Rightarrow {I_2} = \left( {{t^3} - 3{t^2} + 6t - 6} \right){e^t} + {C_2}\]
When we integrate from \[0\] to\[x\], we get
\[ \Rightarrow {I_2} = \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + {C_2}\]
We will further substitute the values of \[{I_1}\]and \[{I_2}\]in equation 1 to get
\[ \Rightarrow f\left( x \right) = - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + {C_1} + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + {C_2}\]
As we can write\[{C_1} + {C_2} = C\]
\[ \Rightarrow f\left( x \right) = - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + C\]
Finally we will find the derivative of function\[f\left( x \right)\]with respect to\[x\].
\[\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ { - \left( {{a^3} - 3{a^2} + 6a - 6} \right){e^a} + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + C} \right]\]
By using chain rule\[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u\dfrac{d}{{dx}}\left( v \right) + v\dfrac{d}{{dx}}\left( u \right)\], we get
\[\begin{array}{l}\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \left( { - {a^3} + 3{a^2} - 6a + 6} \right)\dfrac{d}{{dx}}\left( {{e^a}} \right) + {e^a}\dfrac{d}{{dx}}\left( { - {a^3} + 3{a^2} - 6a + 6} \right) + \left( {{x^3} - 3{x^2} + 6x - 6} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)\\ + {e^x}\dfrac{d}{{dx}}\left( {{x^3} - 3{x^2} + 6x - 6} \right)\end{array}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = \left( { - {a^3} + 3{a^2} - 6a + 6} \right)\left( 0 \right) + {e^a}\left( 0 \right) + \left( {{x^3} - 3{x^2} + 6x - 6} \right){e^x} + {e^x}\left( {3{x^2} - 6x + 6} \right)\]
\[ \Rightarrow \dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] = {x^3}{e^x} - 3{x^2}{e^x} + 6x{e^x} - 6{e^x} + 3{x^2}{e^x} - 6x{e^x} + 6{e^x}\]
After further simplification, we get
\[\dfrac{d}{{dx}}f\left( x \right) = {x^3}{e^x}\]
As a result, the value of\[\dfrac{d}{{dx}}f\left( x \right)\]is\[{x^3}{e^x}\].
Option ‘B’ is correct
Note: As the functions change, it is not essential to integrate taking limits directly \[x\] to\[a\]. We must avoid errors and confusion while dealing with sign changes that occurred during integration. We need to adopt the identities that make the problems easier.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

