
If $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$. Then what is the value of $\dfrac{{dy}}{{dx}}$?
A. 0
B. $\dfrac{\pi }{4}$
C. 1
D. $\dfrac{1}{2}$
Answer
232.8k+ views
Hint: Simplify the given trigonometric equation by multiplying the numerator and denominator by $\cos x$. Convert the equation in terms of a trigonometric function tan. Then use the property of inverse trigonometric function. In the end, differentiate the equation with respect to $x$ and get the required answer.
Formula Used:
$\dfrac{{\sin A}}{{\cos A}} = \tan A$
$\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$
Complete step by step solution:
The given trigonometric equation is $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$.
Let’s simplify the above equation.
Divide the numerator and denominator on the right-hand side by $\cos x$.
$y = \tan^{ - 1}\left[ {\dfrac{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan x + 1}}{{1 - \tan x}}} \right]$ [Since $\dfrac{{sin A}}{{cos A}} = tan A$]
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan\left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan\left( {\dfrac{\pi }{4}} \right)\tan x}}} \right]$ [Since $\tan\left( {\dfrac{\pi }{4}} \right) = 1$]
Now apply the trigonometric identity $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$.
We get,
$y = \tan^{ - 1}\left[ {\tan\left( {\dfrac{\pi }{4} + x} \right)} \right]$
Apply the inverse trigonometry rule $\tan^{ - 1}\left( {\tan A} \right) = A$.
$y = \dfrac{\pi }{4} + x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} + x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {0 + 1} \right)$ [Since the derivative of constant term is zero.]
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘C’ is correct
Note: Remember the formula of $\tan\left( {A + B} \right)$ is $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$. The chain rule of differentiation can also be used to resolve the problem which makes it easier to examine the behavior of function step by step.
Formula Used:
$\dfrac{{\sin A}}{{\cos A}} = \tan A$
$\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$
Complete step by step solution:
The given trigonometric equation is $y = \tan^{ - 1}\left[ {\dfrac{{\sin x + \cos x}}{{\cos x - \sin x}}} \right]$.
Let’s simplify the above equation.
Divide the numerator and denominator on the right-hand side by $\cos x$.
$y = \tan^{ - 1}\left[ {\dfrac{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}{{\dfrac{{\cos x - \sin x}}{{\cos x}}}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan x + 1}}{{1 - \tan x}}} \right]$ [Since $\dfrac{{sin A}}{{cos A}} = tan A$]
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right]$
$ \Rightarrow y = \tan^{ - 1}\left[ {\dfrac{{\tan\left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan\left( {\dfrac{\pi }{4}} \right)\tan x}}} \right]$ [Since $\tan\left( {\dfrac{\pi }{4}} \right) = 1$]
Now apply the trigonometric identity $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$.
We get,
$y = \tan^{ - 1}\left[ {\tan\left( {\dfrac{\pi }{4} + x} \right)} \right]$
Apply the inverse trigonometry rule $\tan^{ - 1}\left( {\tan A} \right) = A$.
$y = \dfrac{\pi }{4} + x$
Differentiate the above equation with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{\pi }{4} + x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {0 + 1} \right)$ [Since the derivative of constant term is zero.]
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Option ‘C’ is correct
Note: Remember the formula of $\tan\left( {A + B} \right)$ is $\tan\left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}$. The chain rule of differentiation can also be used to resolve the problem which makes it easier to examine the behavior of function step by step.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

