
If $y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$, then calculate $\dfrac{{dy}}{{dx}}$.
A. 0
B. 2
C. -2
D. -4
Answer
232.8k+ views
Hint: First apply complementary angles in trigonometry ratios to simplify the given equation. Then apply the derivative formula to the equation to find $\dfrac{{dy}}{{dx}}$.
Formula Used:
Trigonometry ratios of the complementary angle
$\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
$\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$
$\sec \theta = \text{cosec }\left( {{{90}^ \circ } - \theta } \right)$
$\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$
${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $
$\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $
${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $
${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$\dfrac{d}{{dx}}\left( {mx} \right) = m$ where $m$ is constant.
$\dfrac{d}{{dx}}\left( c \right) = 0$ where $c$ is constant
Complete step by step solution:
Given equation is
$y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$
we will apply trigonometry ratios of complementary angles $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$, $\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$, $\sec \theta = \cos ec\left( {{{90}^ \circ } - \theta } \right)$ and $\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$.
$y = {\sec ^{ - 1}}\left[ {\sec \left( {{{90}^ \circ } - x} \right)} \right] + \text{cosec }^{ - 1}\left[ {\text{cosec }\left( {{{90}^ \circ } - x} \right)} \right] + {\sin ^{ - 1}}\left[ {\sin \left( {{{90}^ \circ } - x} \right)} \right] + {\cos ^{ - 1}}\left[ {\cos \left( {{{90}^ \circ } - x} \right)} \right]$
Applying the formulas ${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $ , $\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $, ${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $, and ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$ \Rightarrow y = \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right)$
$ \Rightarrow y = {360^ \circ } - 4x$
We know that, ${360^ \circ } = 2\pi $.
$ \Rightarrow y = 2\pi - 4x$
Differentiate with respect to $x$
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi - 4x} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi } \right) - \dfrac{d}{{dx}}\left( {4x} \right)$
Now applying the formula $\dfrac{d}{{dx}}\left( {mx} \right) = m$ and $\dfrac{d}{{dx}}\left( c \right) = 0$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 - 4$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 4$
Option ‘D’ is correct
Note: Students often start to solve problems directly. They did not apply the complimentary angles of trigonometry ratios to simplify $y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$. It becomes lengthy and complicated. So, first we will apply the complementary angles of trigonometry ratios and formulas inverse function to simplify the equation. Then we derive it.
Formula Used:
Trigonometry ratios of the complementary angle
$\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$
$\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$
$\sec \theta = \text{cosec }\left( {{{90}^ \circ } - \theta } \right)$
$\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$
${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $
$\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $
${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $
${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$\dfrac{d}{{dx}}\left( {mx} \right) = m$ where $m$ is constant.
$\dfrac{d}{{dx}}\left( c \right) = 0$ where $c$ is constant
Complete step by step solution:
Given equation is
$y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$
we will apply trigonometry ratios of complementary angles $\sin \theta = \cos \left( {{{90}^ \circ } - \theta } \right)$, $\cos \theta = \sin \left( {{{90}^ \circ } - \theta } \right)$, $\sec \theta = \cos ec\left( {{{90}^ \circ } - \theta } \right)$ and $\text{cosec }\theta = \sec \left( {{{90}^ \circ } - \theta } \right)$.
$y = {\sec ^{ - 1}}\left[ {\sec \left( {{{90}^ \circ } - x} \right)} \right] + \text{cosec }^{ - 1}\left[ {\text{cosec }\left( {{{90}^ \circ } - x} \right)} \right] + {\sin ^{ - 1}}\left[ {\sin \left( {{{90}^ \circ } - x} \right)} \right] + {\cos ^{ - 1}}\left[ {\cos \left( {{{90}^ \circ } - x} \right)} \right]$
Applying the formulas ${\sec ^{ - 1}}\left( {\sec \theta } \right) = \theta $ , $\text{cosec }^{ - 1}\left( {\text{cosec }\theta } \right) = \theta $, ${\sin ^{ - 1}}\left( {\sin \theta } \right) = \theta $, and ${\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta $
$ \Rightarrow y = \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right) + \left( {{{90}^ \circ } - x} \right)$
$ \Rightarrow y = {360^ \circ } - 4x$
We know that, ${360^ \circ } = 2\pi $.
$ \Rightarrow y = 2\pi - 4x$
Differentiate with respect to $x$
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi - 4x} \right)$
Apply the formula $\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {2\pi } \right) - \dfrac{d}{{dx}}\left( {4x} \right)$
Now applying the formula $\dfrac{d}{{dx}}\left( {mx} \right) = m$ and $\dfrac{d}{{dx}}\left( c \right) = 0$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 - 4$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 4$
Option ‘D’ is correct
Note: Students often start to solve problems directly. They did not apply the complimentary angles of trigonometry ratios to simplify $y = {\sec ^{ - 1}}\left[ {\text{cosec }x} \right] + \text{cosec }^{ - 1}\left[ {\sec x} \right] + {\sin ^{ - 1}}\left[ {\cos x} \right] + {\cos ^{ - 1}}\left[ {\sin x} \right]$. It becomes lengthy and complicated. So, first we will apply the complementary angles of trigonometry ratios and formulas inverse function to simplify the equation. Then we derive it.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

