
If $y = mx$ be the equation of a chord of a circle whose radius is \[a\] , the origin of coordinates being one extremity of the chord and the axis of $x$ being a diameter of the circle, prove that the equation of a circle of which this chord is the diameter is \[\left( {1 + {m^2}} \right)\left( {{x^2} + {y^2}} \right) - 2a\left( {x + my} \right) = 0\].
Answer
233.1k+ views
Hint-Equation of circle is \[{x^2}{\text{ + }}{y^2}{\text{ = }}{a^2}\] with centre at origin. The end points of the chord always lie on the circle and hence satisfy the circle equation.
According to question it is given that equation of chord is \[y = mx\]
So to solve this question first we assume the end of the chord be \[\left( {h,mh} \right)\] and the other end be \[\left( {0,0} \right)\]. These two end points of chords must lie on the circle.
Equation of circle is \[{\left( {x - a} \right)^2}{\text{ + }}{y^2}{\text{ = }}{a^2}\], and \[\left( {h,mh} \right)\] lies on the circle.
\[\therefore {\left( {h - a} \right)^2} + {m^2}{h^2} = {a^2}.....\left( {\text{i}} \right)\]
Now, expand the \[{\left( {h - a} \right)^2} = {h^2} + {a^2} - 2ha\] in the equation \[\left( {\text{i}} \right){\text{,}}\]
\[ \Rightarrow {h^2} - 2ah + {m^2}{h^2} = 0......\left( {{\text{ii}}} \right)\]
Take \[h\] common from above equation so that our equation simplifies further
\[
\Rightarrow h - 2a + {m^2}h = 0 \\
\Rightarrow h = \dfrac{{2a}}{{1 + {m^2}}} \\
\]
Now we got the value of $h$ which we can use to make the equation of the circle of which the chord is a diameter.
Therefore, the equation of circle of which chord $y = mx$ with endpoints \[\left( {0,0} \right){\text{ \& }}\left( {h,mh} \right)\] is the diameter will be
\[
(x - h)x + (y - mh)y = 0 \\
{x^2} + hx + {y^2} - mhy = 0 \\
{x^2} + {y^2} = h\left( {x + my} \right) \\
\]
Put $h$ value obtained as above
\[\left( {1 + {m^2}} \right)\left( {{x^2} + {y^2}} \right) = 2a(x + my)\]
Hence proved \[\left( {1 + {m^2}} \right)\left( {{x^2} + {y^2}} \right) = 2a(x + my) = 0\] is the equation of circle required.
Note-Whenever this type of question appears then always first write down the given things in the question. This is a very easy way to approach the question. Remember the standard equation of circle as mentioned in the solution which is \[{x^2}{\text{ + }}{y^2}{\text{ = }}{a^2}\]. The end points of a chord always lie on the circle hence, satisfy the circle equation.
According to question it is given that equation of chord is \[y = mx\]
So to solve this question first we assume the end of the chord be \[\left( {h,mh} \right)\] and the other end be \[\left( {0,0} \right)\]. These two end points of chords must lie on the circle.
Equation of circle is \[{\left( {x - a} \right)^2}{\text{ + }}{y^2}{\text{ = }}{a^2}\], and \[\left( {h,mh} \right)\] lies on the circle.
\[\therefore {\left( {h - a} \right)^2} + {m^2}{h^2} = {a^2}.....\left( {\text{i}} \right)\]
Now, expand the \[{\left( {h - a} \right)^2} = {h^2} + {a^2} - 2ha\] in the equation \[\left( {\text{i}} \right){\text{,}}\]
\[ \Rightarrow {h^2} - 2ah + {m^2}{h^2} = 0......\left( {{\text{ii}}} \right)\]
Take \[h\] common from above equation so that our equation simplifies further
\[
\Rightarrow h - 2a + {m^2}h = 0 \\
\Rightarrow h = \dfrac{{2a}}{{1 + {m^2}}} \\
\]
Now we got the value of $h$ which we can use to make the equation of the circle of which the chord is a diameter.
Therefore, the equation of circle of which chord $y = mx$ with endpoints \[\left( {0,0} \right){\text{ \& }}\left( {h,mh} \right)\] is the diameter will be
\[
(x - h)x + (y - mh)y = 0 \\
{x^2} + hx + {y^2} - mhy = 0 \\
{x^2} + {y^2} = h\left( {x + my} \right) \\
\]
Put $h$ value obtained as above
\[\left( {1 + {m^2}} \right)\left( {{x^2} + {y^2}} \right) = 2a(x + my)\]
Hence proved \[\left( {1 + {m^2}} \right)\left( {{x^2} + {y^2}} \right) = 2a(x + my) = 0\] is the equation of circle required.
Note-Whenever this type of question appears then always first write down the given things in the question. This is a very easy way to approach the question. Remember the standard equation of circle as mentioned in the solution which is \[{x^2}{\text{ + }}{y^2}{\text{ = }}{a^2}\]. The end points of a chord always lie on the circle hence, satisfy the circle equation.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

