
If \[x,y\] and \[z\] are three unit vectors in a three dimensional space, then the minimum value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\]is
A. \[\dfrac{3}{2}\]
B. \[3\]
C. \[3\sqrt 3 \]
D. \[6\]
Answer
590.7k+ views
Hint:Here we use the knowledge of unit vectors that they always have magnitude equal to one. Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] we expand each term which is in square form. Then using the expansion of \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2}\] we find the value of \[2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\]and use it for finding the minimum value of the given vectors.
Formula used:We have the formula \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\]
Complete step-by-step answer:
We have three unit vectors \[x,y\] and \[z\]. Since, we know unit vectors have magnitude 1
\[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
We have to find the value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\].
We solve each term separately.
First we solve \[{\left| {\hat x + \hat y} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] we can write
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = (\hat x + \hat y).(\hat x + \hat y)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = \hat x.\hat x + \hat x.\hat y + \hat y.\hat x + \hat y.\hat y\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = {\left| {\hat x} \right|^2} + \hat x.\hat y + \hat x.\hat y + {\left| {\hat y} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 1 + 2\hat x.\hat y + 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 2 + 2\hat x.\hat y …….. (1)\]
Now we solve \[{\left| {\hat y + \hat z} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = (\hat y + \hat z).(\hat y + \hat z)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = \hat y\hat y + \hat y.\hat z + \hat z.\hat y + \hat z.\hat z\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = {\left| {\hat y} \right|^2} + \hat y.\hat z + \hat y.\hat z + {\left| {\hat z} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 1 + 2\hat y.\hat z + 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 2 + 2\hat y.\hat z .......… (2)\]
Now we solve \[{\left| {\hat z + \hat x} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = (\hat z + \hat x).(\hat z + \hat x)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = \hat z.\hat z + \hat z.\hat x + \hat x.\hat z + \hat x.\hat x\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]again
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = {\left| {\hat z} \right|^2} + \hat z.\hat x + \hat z.\hat x + {\left| {\hat x} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 1 + 2\hat z.\hat x + 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat z.\hat x………….… (3)\]
Now we substitute values from equations (1), (2) and (3) in the sum of terms
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat x.\hat y + 2 + 2\hat y.\hat z + 2 + 2\hat z.\hat x \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2\hat x.\hat y + 2\hat y.\hat z + 2\hat z.\hat x \\
\]
Take 2 common from the last three terms
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x) …….. (4)\]
Now we know the expansion \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\].
Substitute the values of \[\overrightarrow a = \hat x,\overrightarrow b = \hat y,\overrightarrow c = \hat z\].
\[ \Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = {\left| {\hat x} \right|^2} + {\left| {\hat y} \right|^2} + {\left| {\hat z} \right|^2} + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\]
Substitute the values of \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 1 + 1 + 1 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\]
We can see that \[{\left| {\hat x + \hat y + \hat z} \right|^2} > 0\] as the terms on RHS are adding.
\[\therefore 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > 0\]
Shifting the value of constant to one side of the equation we get
\[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3…………. (5)\]
Therefore we can use equation (5) in equation (4)
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x)\]
Substitute \[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3\]
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 6 + ( - 3) \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 3 \\
\]
Therefore the minimum value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\] is 3.
So, the correct answer is “Option B”.
Note:Students many times make mistake of writing the vectors multiplied in the bracket \[2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\] as \[2(1 + 1 + 1) = 2 \times 3 = 6\] which is wrong because we don’t know the direction of the vectors and direction plays very important role in vectors.
Formula used:We have the formula \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\]
Complete step-by-step answer:
We have three unit vectors \[x,y\] and \[z\]. Since, we know unit vectors have magnitude 1
\[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
We have to find the value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\].
We solve each term separately.
First we solve \[{\left| {\hat x + \hat y} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] we can write
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = (\hat x + \hat y).(\hat x + \hat y)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = \hat x.\hat x + \hat x.\hat y + \hat y.\hat x + \hat y.\hat y\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = {\left| {\hat x} \right|^2} + \hat x.\hat y + \hat x.\hat y + {\left| {\hat y} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 1 + 2\hat x.\hat y + 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 2 + 2\hat x.\hat y …….. (1)\]
Now we solve \[{\left| {\hat y + \hat z} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = (\hat y + \hat z).(\hat y + \hat z)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = \hat y\hat y + \hat y.\hat z + \hat z.\hat y + \hat z.\hat z\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = {\left| {\hat y} \right|^2} + \hat y.\hat z + \hat y.\hat z + {\left| {\hat z} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 1 + 2\hat y.\hat z + 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 2 + 2\hat y.\hat z .......… (2)\]
Now we solve \[{\left| {\hat z + \hat x} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = (\hat z + \hat x).(\hat z + \hat x)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = \hat z.\hat z + \hat z.\hat x + \hat x.\hat z + \hat x.\hat x\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]again
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = {\left| {\hat z} \right|^2} + \hat z.\hat x + \hat z.\hat x + {\left| {\hat x} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 1 + 2\hat z.\hat x + 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat z.\hat x………….… (3)\]
Now we substitute values from equations (1), (2) and (3) in the sum of terms
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat x.\hat y + 2 + 2\hat y.\hat z + 2 + 2\hat z.\hat x \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2\hat x.\hat y + 2\hat y.\hat z + 2\hat z.\hat x \\
\]
Take 2 common from the last three terms
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x) …….. (4)\]
Now we know the expansion \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\].
Substitute the values of \[\overrightarrow a = \hat x,\overrightarrow b = \hat y,\overrightarrow c = \hat z\].
\[ \Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = {\left| {\hat x} \right|^2} + {\left| {\hat y} \right|^2} + {\left| {\hat z} \right|^2} + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\]
Substitute the values of \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 1 + 1 + 1 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\]
We can see that \[{\left| {\hat x + \hat y + \hat z} \right|^2} > 0\] as the terms on RHS are adding.
\[\therefore 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > 0\]
Shifting the value of constant to one side of the equation we get
\[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3…………. (5)\]
Therefore we can use equation (5) in equation (4)
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x)\]
Substitute \[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3\]
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 6 + ( - 3) \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 3 \\
\]
Therefore the minimum value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\] is 3.
So, the correct answer is “Option B”.
Note:Students many times make mistake of writing the vectors multiplied in the bracket \[2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\] as \[2(1 + 1 + 1) = 2 \times 3 = 6\] which is wrong because we don’t know the direction of the vectors and direction plays very important role in vectors.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

