
If \[x,y\] and \[z\] are three unit vectors in a three dimensional space, then the minimum value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\]is
A. \[\dfrac{3}{2}\]
B. \[3\]
C. \[3\sqrt 3 \]
D. \[6\]
Answer
512.1k+ views
Hint:Here we use the knowledge of unit vectors that they always have magnitude equal to one. Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] we expand each term which is in square form. Then using the expansion of \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2}\] we find the value of \[2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\]and use it for finding the minimum value of the given vectors.
Formula used:We have the formula \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\]
Complete step-by-step answer:
We have three unit vectors \[x,y\] and \[z\]. Since, we know unit vectors have magnitude 1
\[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
We have to find the value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\].
We solve each term separately.
First we solve \[{\left| {\hat x + \hat y} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] we can write
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = (\hat x + \hat y).(\hat x + \hat y)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = \hat x.\hat x + \hat x.\hat y + \hat y.\hat x + \hat y.\hat y\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = {\left| {\hat x} \right|^2} + \hat x.\hat y + \hat x.\hat y + {\left| {\hat y} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 1 + 2\hat x.\hat y + 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 2 + 2\hat x.\hat y …….. (1)\]
Now we solve \[{\left| {\hat y + \hat z} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = (\hat y + \hat z).(\hat y + \hat z)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = \hat y\hat y + \hat y.\hat z + \hat z.\hat y + \hat z.\hat z\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = {\left| {\hat y} \right|^2} + \hat y.\hat z + \hat y.\hat z + {\left| {\hat z} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 1 + 2\hat y.\hat z + 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 2 + 2\hat y.\hat z .......… (2)\]
Now we solve \[{\left| {\hat z + \hat x} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = (\hat z + \hat x).(\hat z + \hat x)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = \hat z.\hat z + \hat z.\hat x + \hat x.\hat z + \hat x.\hat x\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]again
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = {\left| {\hat z} \right|^2} + \hat z.\hat x + \hat z.\hat x + {\left| {\hat x} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 1 + 2\hat z.\hat x + 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat z.\hat x………….… (3)\]
Now we substitute values from equations (1), (2) and (3) in the sum of terms
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat x.\hat y + 2 + 2\hat y.\hat z + 2 + 2\hat z.\hat x \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2\hat x.\hat y + 2\hat y.\hat z + 2\hat z.\hat x \\
\]
Take 2 common from the last three terms
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x) …….. (4)\]
Now we know the expansion \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\].
Substitute the values of \[\overrightarrow a = \hat x,\overrightarrow b = \hat y,\overrightarrow c = \hat z\].
\[ \Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = {\left| {\hat x} \right|^2} + {\left| {\hat y} \right|^2} + {\left| {\hat z} \right|^2} + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\]
Substitute the values of \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 1 + 1 + 1 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\]
We can see that \[{\left| {\hat x + \hat y + \hat z} \right|^2} > 0\] as the terms on RHS are adding.
\[\therefore 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > 0\]
Shifting the value of constant to one side of the equation we get
\[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3…………. (5)\]
Therefore we can use equation (5) in equation (4)
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x)\]
Substitute \[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3\]
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 6 + ( - 3) \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 3 \\
\]
Therefore the minimum value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\] is 3.
So, the correct answer is “Option B”.
Note:Students many times make mistake of writing the vectors multiplied in the bracket \[2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\] as \[2(1 + 1 + 1) = 2 \times 3 = 6\] which is wrong because we don’t know the direction of the vectors and direction plays very important role in vectors.
Formula used:We have the formula \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\]
Complete step-by-step answer:
We have three unit vectors \[x,y\] and \[z\]. Since, we know unit vectors have magnitude 1
\[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
We have to find the value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\].
We solve each term separately.
First we solve \[{\left| {\hat x + \hat y} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] we can write
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = (\hat x + \hat y).(\hat x + \hat y)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = \hat x.\hat x + \hat x.\hat y + \hat y.\hat x + \hat y.\hat y\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = {\left| {\hat x} \right|^2} + \hat x.\hat y + \hat x.\hat y + {\left| {\hat y} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 1 + 2\hat x.\hat y + 1\]
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} = 2 + 2\hat x.\hat y …….. (1)\]
Now we solve \[{\left| {\hat y + \hat z} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = (\hat y + \hat z).(\hat y + \hat z)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = \hat y\hat y + \hat y.\hat z + \hat z.\hat y + \hat z.\hat z\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\] again
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = {\left| {\hat y} \right|^2} + \hat y.\hat z + \hat y.\hat z + {\left| {\hat z} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 1 + 2\hat y.\hat z + 1\]
\[ \Rightarrow {\left| {\hat y + \hat z} \right|^2} = 2 + 2\hat y.\hat z .......… (2)\]
Now we solve \[{\left| {\hat z + \hat x} \right|^2}\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]we can write
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = (\hat z + \hat x).(\hat z + \hat x)\]
Multiplying the terms in RHS of the equation
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = \hat z.\hat z + \hat z.\hat x + \hat x.\hat z + \hat x.\hat x\]
Using the formula \[{\left| {\overrightarrow a } \right|^2} = (\overrightarrow a ).(\overrightarrow a )\]again
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = {\left| {\hat z} \right|^2} + \hat z.\hat x + \hat z.\hat x + {\left| {\hat x} \right|^2}\]
Since \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 1 + 2\hat z.\hat x + 1\]
\[ \Rightarrow {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat z.\hat x………….… (3)\]
Now we substitute values from equations (1), (2) and (3) in the sum of terms
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 2 + 2\hat x.\hat y + 2 + 2\hat y.\hat z + 2 + 2\hat z.\hat x \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2\hat x.\hat y + 2\hat y.\hat z + 2\hat z.\hat x \\
\]
Take 2 common from the last three terms
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x) …….. (4)\]
Now we know the expansion \[{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + 2(\overrightarrow a \overrightarrow b + \overrightarrow b \overrightarrow c + \overrightarrow c \overrightarrow a )\].
Substitute the values of \[\overrightarrow a = \hat x,\overrightarrow b = \hat y,\overrightarrow c = \hat z\].
\[ \Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = {\left| {\hat x} \right|^2} + {\left| {\hat y} \right|^2} + {\left| {\hat z} \right|^2} + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\]
Substitute the values of \[\left| {\hat x} \right| = 1,\left| {\hat y} \right| = 1,\left| {\hat z} \right| = 1\]
\[
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 1 + 1 + 1 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\Rightarrow {\left| {\hat x + \hat y + \hat z} \right|^2} = 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) \\
\]
We can see that \[{\left| {\hat x + \hat y + \hat z} \right|^2} > 0\] as the terms on RHS are adding.
\[\therefore 3 + 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > 0\]
Shifting the value of constant to one side of the equation we get
\[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3…………. (5)\]
Therefore we can use equation (5) in equation (4)
\[ \Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} = 6 + 2(\hat x.\hat y + \hat y.\hat z + \hat z.\hat x)\]
Substitute \[ \Rightarrow 2(\hat x\hat y + \hat y\hat z + \hat z\hat x) > - 3\]
\[
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 6 + ( - 3) \\
\Rightarrow {\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2} > 3 \\
\]
Therefore the minimum value of \[{\left| {\hat x + \hat y} \right|^2} + {\left| {\hat y + \hat z} \right|^2} + {\left| {\hat z + \hat x} \right|^2}\] is 3.
So, the correct answer is “Option B”.
Note:Students many times make mistake of writing the vectors multiplied in the bracket \[2(\hat x\hat y + \hat y\hat z + \hat z\hat x)\] as \[2(1 + 1 + 1) = 2 \times 3 = 6\] which is wrong because we don’t know the direction of the vectors and direction plays very important role in vectors.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
