
If \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\], then find \[\dfrac{{dy}}{{dx}}\].
A. \[\dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
B. \[ - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
C. \[\dfrac{1}{{\left( {1 + {x^2}} \right)}}\]
D. \[\dfrac{1}{{\left( {1 - {x^2}} \right)}}\]
Answer
232.8k+ views
Hint:First we will rewrite the equation as \[x\sqrt {1 + y} = - y\sqrt {1 + x} \]. Then taking square both sides of the equation to remove the square root. Then simplify the equation and find \[y\] in terms of \[x\]. Then we will apply the quotient formula \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\] to get \[\dfrac{{dy}}{{dx}}\].
Formula Used:
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[{\left( {\sqrt x } \right)^2} = x\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Quotient formula: \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Rewrite the above equation:
\[x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Taking square root both sides of the equation
\[ \Rightarrow {\left( {x\sqrt {1 + y} } \right)^2} = {\left( { - y\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {x^2}{\left( {\sqrt {1 + y} } \right)^2} = {y^2}{\left( {\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {\sqrt x } \right)^2} = x\]
\[ \Rightarrow {x^2}\left( {1 + y} \right) = {y^2}\left( {1 + x} \right)\]
Apply distributive property
\[ \Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x\]
\[ \Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] on the left side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = {y^2}x - {x^2}y\]
Take common \[xy\] from the right side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = xy\left( {y - x} \right)\]
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = - xy\left( {x - y} \right)\]
Cancel out \[\left( {x - y} \right)\]
\[ \Rightarrow \left( {x + y} \right) = - xy\]
\[ \Rightarrow x = - xy - y\]
\[ \Rightarrow x = - y\left( {1 + x} \right)\]
\[ \Rightarrow y = - \dfrac{x}{{1 + x}}\]
Differentiate with respect to \[x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)\dfrac{d}{{dx}}x - x\dfrac{d}{{dx}}\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right) \cdot 1 - x \cdot 1}}{{{{\left( {1 + x} \right)}^2}}}\]
Apply the formula \[\dfrac{{dx}}{{dx}} = 1\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Hence option B is the correct option.
Note:Sometimes students apply the derivative formula in the give equation \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]. That is a length process and they are unable to reach the desired result. So first we have to simplify the given equation then find the derivative of it.
Formula Used:
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[{\left( {\sqrt x } \right)^2} = x\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Quotient formula: \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}\]
Complete step by step solution:
Given equation is
\[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]
Rewrite the above equation:
\[x\sqrt {1 + y} = - y\sqrt {1 + x} \]
Taking square root both sides of the equation
\[ \Rightarrow {\left( {x\sqrt {1 + y} } \right)^2} = {\left( { - y\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {x^2}{\left( {\sqrt {1 + y} } \right)^2} = {y^2}{\left( {\sqrt {1 + x} } \right)^2}\]
Apply the formula \[{\left( {\sqrt x } \right)^2} = x\]
\[ \Rightarrow {x^2}\left( {1 + y} \right) = {y^2}\left( {1 + x} \right)\]
Apply distributive property
\[ \Rightarrow {x^2} + {x^2}y = {y^2} + {y^2}x\]
\[ \Rightarrow {x^2} - {y^2} = {y^2}x - {x^2}y\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] on the left side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = {y^2}x - {x^2}y\]
Take common \[xy\] from the right side
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = xy\left( {y - x} \right)\]
\[ \Rightarrow \left( {x - y} \right)\left( {x + y} \right) = - xy\left( {x - y} \right)\]
Cancel out \[\left( {x - y} \right)\]
\[ \Rightarrow \left( {x + y} \right) = - xy\]
\[ \Rightarrow x = - xy - y\]
\[ \Rightarrow x = - y\left( {1 + x} \right)\]
\[ \Rightarrow y = - \dfrac{x}{{1 + x}}\]
Differentiate with respect to \[x\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)\dfrac{d}{{dx}}x - x\dfrac{d}{{dx}}\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right) \cdot 1 - x \cdot 1}}{{{{\left( {1 + x} \right)}^2}}}\]
Apply the formula \[\dfrac{{dx}}{{dx}} = 1\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}\]
Hence option B is the correct option.
Note:Sometimes students apply the derivative formula in the give equation \[x\sqrt {1 + y} + y\sqrt {1 + x} = 0\]. That is a length process and they are unable to reach the desired result. So first we have to simplify the given equation then find the derivative of it.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

