
If \[{x_i} > 0\], \[i = 1,2,3, \cdots ,n\] then find the minima value of \[\left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right)\].
A. \[{n^2}\]
B. \[ \ge {n^2}\]
C. \[ \le {n^2}\]
D. None of these
Answer
232.8k+ views
Hint:We know the arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\] and the harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\]. Then put the value of arithmetic mean and harmonic mean in \[A.M \ge H.M\]. From the above relation we can get value of \[\left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right)\].
Formula Used:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
The relation between the arithmetic mean and harmonic mean is \[A.M \ge H.M\].
Complete step by step solution:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
Now putting the value of arithmetic mean and harmonic mean in \[A.M \ge H.M\]
\[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n} \ge \dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\]
Cross multiply
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge n \cdot n\]
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge {n^2}\]
Hence the correct option is option B.
Note:Students often confused with the relation \[A.M \ge G.M \ge H.M\] and \[A.M > G.M > H.M\]. We apply the formula \[A.M \ge G.M \ge H.M\] if all numbers are positive and apply the formula \[A.M > G.M > H.M\], if all numbers distinct.
Formula Used:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
The relation between the arithmetic mean and harmonic mean is \[A.M \ge H.M\].
Complete step by step solution:
The arithmetic mean of \[{x_1},{x_2}, \cdots ,{x_n}\] is \[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n}\].
The harmonic mean of \[\dfrac{1}{{{x_1}}},\dfrac{1}{{{x_2}}}, \cdots ,\dfrac{1}{{{x_n}}}\] is \[\dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\].
Now putting the value of arithmetic mean and harmonic mean in \[A.M \ge H.M\]
\[\dfrac{{{x_1} + {x_2} + \cdots + {x_n}}}{n} \ge \dfrac{n}{{\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}}}\]
Cross multiply
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge n \cdot n\]
\[ \Rightarrow \left( {{x_1} + {x_2} + \cdots + {x_n}} \right)\left( {\dfrac{1}{{{x_1}}} + \dfrac{1}{{{x_2}}} + \cdots + \dfrac{1}{{{x_n}}}} \right) \ge {n^2}\]
Hence the correct option is option B.
Note:Students often confused with the relation \[A.M \ge G.M \ge H.M\] and \[A.M > G.M > H.M\]. We apply the formula \[A.M \ge G.M \ge H.M\] if all numbers are positive and apply the formula \[A.M > G.M > H.M\], if all numbers distinct.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

