
If X, Y are positive real numbers such that X>Y and A is any positive real number, then
A. $\dfrac{X}{Y}\ge \dfrac{X+A}{Y+A}$
B. $\dfrac{X}{Y}$$>$$\dfrac{X+A}{Y+A}$
C. $\dfrac{X}{Y}\le \dfrac{X+A}{Y+A}$
D. $\dfrac{X}{Y}$$<$$\dfrac{X+A}{Y+A}$
Answer
232.8k+ views
Hint: To solve this question, we have to deduce the relation between $X+A$ and $Y+A$. From the question, we can write \[X > Y\], and adding A on both sides doesn’t change the inequality. Adding A on both sides, we get,
\[\begin{align}
& X+A > Y+A \\
& \dfrac{X+A}{Y+A} > 1 \\
\end{align}\]
Complete step-by-step solution:
We have to assume the values of $\dfrac{X}{Y}=m$ and $\dfrac{X+A}{Y+A}=n$. From the equation $\dfrac{X}{Y}$= m we get
$X=m\times Y$
Use this relation in $\dfrac{X+A}{Y+A}=n$ and simplify to get the required inequality.
In the question, it is given that \[X > Y\], A is a positive real number we can add A on both sides and the inequality remains the same. By adding A, we get
\[X+A > Y+A\]
As Y + A is a positive number, we can divide the above equation with Y + A and the inequality remains the same.
\[\dfrac{X+A}{Y+A} > 1\to \left( 1 \right)\]
Let us assume that $\dfrac{X}{Y}=m$ and $\dfrac{X+A}{Y+A}=n > 1\to \left( 2 \right)$.
From $\dfrac{X}{Y}=m$, we get
$X=mY$
Using this in the equation $\dfrac{X+A}{Y+A}=n$, we get
$\dfrac{mY+A}{Y+A}=n$
Multiplying with $Y+A$ on both sides, we get
$\begin{align}
& \dfrac{mY+A}{Y+A}\times \left( Y+A \right)=n\times \left( Y+A \right) \\
& mY+A=nY+nA \\
\end{align}$
By simplifying, we get
$\begin{align}
& mY-nY=nA-A \\
& Y\left( m-n \right)=A\left( n-1 \right) \\
\end{align}$
Cross-multiplying gives
$\dfrac{Y}{A}=\dfrac{n-1}{m-n}$
If we observe the equation that is written above, the terms
$Y > 0$ as given in the question,
$A > 0$ as given in the question,
$n > 1\; \text{and}\; n – 1 > 0$ from equation-2.
So, we can write that the term $m-n > 0$ as the remaining terms in the equation are positive.
As $m-n > 0$, we can write that
$m > n$
Substituting the values of m, n in the above inequality, we get
$\dfrac{X}{Y} > \dfrac{X+A}{Y+A}$.
$\therefore $The answer is $\dfrac{X}{Y} > \dfrac{X+A}{Y+A}$. The answer is option-B.
Note: There is a possibility of a mistake while selecting the option. The options A and B are quite close to each other. The option A will be true if the condition given in the question is $X\ge Y$, but the condition is $X > Y$, so we can only have the answer as $\dfrac{X}{Y}$$>$$\dfrac{X+A}{Y+A}$ but not $\dfrac{X}{Y}\ge \dfrac{X+A}{Y+A}$.
\[\begin{align}
& X+A > Y+A \\
& \dfrac{X+A}{Y+A} > 1 \\
\end{align}\]
Complete step-by-step solution:
We have to assume the values of $\dfrac{X}{Y}=m$ and $\dfrac{X+A}{Y+A}=n$. From the equation $\dfrac{X}{Y}$= m we get
$X=m\times Y$
Use this relation in $\dfrac{X+A}{Y+A}=n$ and simplify to get the required inequality.
In the question, it is given that \[X > Y\], A is a positive real number we can add A on both sides and the inequality remains the same. By adding A, we get
\[X+A > Y+A\]
As Y + A is a positive number, we can divide the above equation with Y + A and the inequality remains the same.
\[\dfrac{X+A}{Y+A} > 1\to \left( 1 \right)\]
Let us assume that $\dfrac{X}{Y}=m$ and $\dfrac{X+A}{Y+A}=n > 1\to \left( 2 \right)$.
From $\dfrac{X}{Y}=m$, we get
$X=mY$
Using this in the equation $\dfrac{X+A}{Y+A}=n$, we get
$\dfrac{mY+A}{Y+A}=n$
Multiplying with $Y+A$ on both sides, we get
$\begin{align}
& \dfrac{mY+A}{Y+A}\times \left( Y+A \right)=n\times \left( Y+A \right) \\
& mY+A=nY+nA \\
\end{align}$
By simplifying, we get
$\begin{align}
& mY-nY=nA-A \\
& Y\left( m-n \right)=A\left( n-1 \right) \\
\end{align}$
Cross-multiplying gives
$\dfrac{Y}{A}=\dfrac{n-1}{m-n}$
If we observe the equation that is written above, the terms
$Y > 0$ as given in the question,
$A > 0$ as given in the question,
$n > 1\; \text{and}\; n – 1 > 0$ from equation-2.
So, we can write that the term $m-n > 0$ as the remaining terms in the equation are positive.
As $m-n > 0$, we can write that
$m > n$
Substituting the values of m, n in the above inequality, we get
$\dfrac{X}{Y} > \dfrac{X+A}{Y+A}$.
$\therefore $The answer is $\dfrac{X}{Y} > \dfrac{X+A}{Y+A}$. The answer is option-B.
Note: There is a possibility of a mistake while selecting the option. The options A and B are quite close to each other. The option A will be true if the condition given in the question is $X\ge Y$, but the condition is $X > Y$, so we can only have the answer as $\dfrac{X}{Y}$$>$$\dfrac{X+A}{Y+A}$ but not $\dfrac{X}{Y}\ge \dfrac{X+A}{Y+A}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

