
If $x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty ,y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty ,{\text{ and z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $, then arg (x + yz) is equal to
$\left( a \right)$ 0
$\left( b \right)\pi - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
$\left( c \right) - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
$\left( d \right) - {\tan ^{ - 1}}\left( {\dfrac{2}{{\sqrt 3 }}} \right)$
Answer
232.8k+ views
Hint: In this particular type of question use the concept that that if the multiplication of two or more numbers having same base is written as, ${a^p}{a^q} = {a^{p + q}}$so apply this in all the given equation, later on use the concept of infinite term G.P series formula which is given as, ${S_\infty } = \dfrac{a}{{1 - r}},r < 1$, and use the concept that arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $.......................... (1)
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $....................... (2)
And ${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $.................... (3)
Now first solve equation (1) we have,
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }}$.................. (4)
Now as we see that $\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{\dfrac{1}{9}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} = \dfrac{1}{2}$
Now from equation (4) we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }} = {9^{\dfrac{1}{2}}} = {\left( {{3^2}} \right)^{\dfrac{1}{2}}} = 3$
Now solve equation (2) we have,
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }}$.................. (5)
Now as we see that $\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{ - \dfrac{1}{9}}}{{\dfrac{1}{3}}} = - \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{{ - 1}}{3}}} = \dfrac{1}{4}$
Now from equation (5) we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }} = {4^{\dfrac{1}{4}}} = {\left( {{2^2}} \right)^{\dfrac{1}{4}}} = {2^{\dfrac{1}{2}}} = \sqrt 2 $
Now solve equation (3) we have,
${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $
Now expand this summation we have,
$ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $
Now as we see that $\dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{{1 + i}}$, common ratio (r) = $\dfrac{{\dfrac{1}{{{{\left( {1 + i} \right)}^2}}}}}{{\dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{{\left( {1 + i} \right)}}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
\[ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}}\]
Now simplify we have,
$ \Rightarrow z = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{i} = \dfrac{i}{{{i^2}}} = - i$, $\left[ {\because i = \sqrt { - 1} \Rightarrow {i^2} = - 1} \right]$
Now we have to find the argument of x + yz.
$ \Rightarrow x + yz = 3 + \sqrt 2 \left( { - i} \right) = 3 - i\sqrt 2 $
Now as we know that the arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right)$
Now as we know that tan (-x) = tan (x) so we have,
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of infinite series of G.P which is stated above, then use this formula to simplify all the given equations as above, then calculate the value of x + yz as above and then take the argument of x + yz, we will get the required answer.
Complete step-by-step answer:
Given equation
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $.......................... (1)
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $....................... (2)
And ${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $.................... (3)
Now first solve equation (1) we have,
$x = {9^{\dfrac{1}{3}}}{9^{\dfrac{1}{9}}}{9^{\dfrac{1}{{27}}}}....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }}$.................. (4)
Now as we see that $\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{\dfrac{1}{9}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + .....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}} = \dfrac{1}{2}$
Now from equation (4) we have,
$ \Rightarrow x = {9^{\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ......\infty }} = {9^{\dfrac{1}{2}}} = {\left( {{3^2}} \right)^{\dfrac{1}{2}}} = 3$
Now solve equation (2) we have,
$y = {4^{\dfrac{1}{3}}}{4^{\dfrac{{ - 1}}{9}}}{4^{\dfrac{1}{{27}}}}{4^{\dfrac{{ - 1}}{{81}}}}.....\infty $
Now as we know that ${a^p}{a^q} = {a^{p + q}}$ so use this property we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }}$.................. (5)
Now as we see that $\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{3}$, common ratio (r) = $\dfrac{{ - \dfrac{1}{9}}}{{\dfrac{1}{3}}} = - \dfrac{1}{3}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
$ \Rightarrow \dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}} + ....\infty = \dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{{ - 1}}{3}}} = \dfrac{1}{4}$
Now from equation (5) we have,
$ \Rightarrow y = {4^{\dfrac{1}{3} + \dfrac{{ - 1}}{9} + \dfrac{1}{{27}} + \dfrac{{ - 1}}{{81}}......\infty }} = {4^{\dfrac{1}{4}}} = {\left( {{2^2}} \right)^{\dfrac{1}{4}}} = {2^{\dfrac{1}{2}}} = \sqrt 2 $
Now solve equation (3) we have,
${\text{z}} = \sum\limits_{r = 1}^\infty {{{\left( {1 + i} \right)}^{ - r}}} $
Now expand this summation we have,
$ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $
Now as we see that $\dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty $ forms an infinite series G.P,
Where first term a = $\dfrac{1}{{1 + i}}$, common ratio (r) = $\dfrac{{\dfrac{1}{{{{\left( {1 + i} \right)}^2}}}}}{{\dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{{\left( {1 + i} \right)}}$, the sum of the infinite series G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}},r < 1$
Now substitute the values we have,
\[ \Rightarrow z = \dfrac{1}{{1 + i}} + \dfrac{1}{{{{\left( {1 + i} \right)}^2}}} + \dfrac{1}{{{{\left( {1 + i} \right)}^3}}} + ..... + \infty = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}}\]
Now simplify we have,
$ \Rightarrow z = \dfrac{{\dfrac{1}{{1 + i}}}}{{1 - \dfrac{1}{{\left( {1 + i} \right)}}}} = \dfrac{1}{i} = \dfrac{i}{{{i^2}}} = - i$, $\left[ {\because i = \sqrt { - 1} \Rightarrow {i^2} = - 1} \right]$
Now we have to find the argument of x + yz.
$ \Rightarrow x + yz = 3 + \sqrt 2 \left( { - i} \right) = 3 - i\sqrt 2 $
Now as we know that the arg (x + iy) = ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right)$
Now as we know that tan (-x) = tan (x) so we have,
$ \Rightarrow \arg \left( {x + iy} \right) = \arg \left( {3 - i\sqrt 2 } \right) = {\tan ^{ - 1}}\left( {\dfrac{{ - \sqrt 2 }}{3}} \right) = - {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 }}{3}} \right)$
So this is the required answer.
Hence option (d) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of infinite series of G.P which is stated above, then use this formula to simplify all the given equations as above, then calculate the value of x + yz as above and then take the argument of x + yz, we will get the required answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

