
If we are given the integral expression as $\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx}=\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C$, then find $f\left( x \right)$.
A. $-\text{cosec}x$
B. $\text{cosec}x$
C. $\cot x$
D. $-\cot x$
Answer
232.8k+ views
Hint: We have been given the integral solution and we differentiate both side with respect to x. the differentiation takes the form of $\dfrac{d}{dx}\left[ \dfrac{u\left( x \right)}{v\left( x \right)} \right]=\dfrac{v\left( x \right).{{u}^{'}}\left( x \right)-u\left( x \right)\left[ {{v}^{'}}\left( x \right) \right]}{{{\left( v\left( x \right) \right)}^{2}}}$. Then we equate both sides of the differentiation to find the function and its differential form. We equate with the options to find the solution.
Complete step-by-step solution:
It’s given that $\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx}=\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C$.
We try to take the differentiation on both sides and equate the respective functions to find $f\left( x \right)$.
The differentiation of $\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx}$ gives $\dfrac{d}{dx}\left[ \int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx} \right]=\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
Now we try to find the differentiation of $\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C$ and equate that with $\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
The function $\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C$ is of the form $\dfrac{u\left( x \right)}{v\left( x \right)}$ where $\dfrac{d}{dx}\left[ \dfrac{u\left( x \right)}{v\left( x \right)} \right]=\dfrac{v\left( x \right).{{u}^{'}}\left( x \right)-u\left( x \right)\left[ {{v}^{'}}\left( x \right) \right]}{{{\left( v\left( x \right) \right)}^{2}}}$.
Differentiating we get $\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C \right]=\dfrac{{{\cos }^{5}}x.{{f}^{'}}\left( x \right)-f\left( x \right)\left[ 5{{\cos }^{4}}x\left( -\sin x \right) \right]}{{{\left( {{\cos }^{5}}x \right)}^{2}}}$.
We divide both the numerator and denominator with ${{\cos }^{5}}x$.
So, $\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C \right]=\dfrac{{{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]}{{{\cos }^{5}}x}$. We equate this with $\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
It gives $\dfrac{{{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]}{{{\cos }^{5}}x}=\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
Simplifying we get ${{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x-5$.
Equating we get ${{f}^{'}}\left( x \right)=\text{cosec}^{2}x,f\left( x \right)\left[ 5\tan x \right]=-5$.
Differentiation of $-\cot x$ is $\text{cosec}^{2}x$. So, we take $f\left( x \right)=-\cot x$.
So, $f\left( x \right)\left[ 5\tan x \right]=\left( -\cot x \right)\left( 5\tan x \right)=-5$
The correct option is D.
Note: We also could have taken ${{f}^{'}}\left( x \right)=-5,f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x$. But in that case $f\left( x \right)$ would have been $f\left( x \right)=-5x$ and $\left( -5x \right)\left[ 5\tan x \right]=-25x\tan x\ne \text{cosec}^{2}x$. So, the assumption ${{f}^{'}}\left( x \right)=-5,f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x$ is incorrect.
Complete step-by-step solution:
It’s given that $\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx}=\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C$.
We try to take the differentiation on both sides and equate the respective functions to find $f\left( x \right)$.
The differentiation of $\int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx}$ gives $\dfrac{d}{dx}\left[ \int{\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}dx} \right]=\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
Now we try to find the differentiation of $\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C$ and equate that with $\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
The function $\dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C$ is of the form $\dfrac{u\left( x \right)}{v\left( x \right)}$ where $\dfrac{d}{dx}\left[ \dfrac{u\left( x \right)}{v\left( x \right)} \right]=\dfrac{v\left( x \right).{{u}^{'}}\left( x \right)-u\left( x \right)\left[ {{v}^{'}}\left( x \right) \right]}{{{\left( v\left( x \right) \right)}^{2}}}$.
Differentiating we get $\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C \right]=\dfrac{{{\cos }^{5}}x.{{f}^{'}}\left( x \right)-f\left( x \right)\left[ 5{{\cos }^{4}}x\left( -\sin x \right) \right]}{{{\left( {{\cos }^{5}}x \right)}^{2}}}$.
We divide both the numerator and denominator with ${{\cos }^{5}}x$.
So, $\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{{{\cos }^{5}}x}+C \right]=\dfrac{{{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]}{{{\cos }^{5}}x}$. We equate this with $\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
It gives $\dfrac{{{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]}{{{\cos }^{5}}x}=\dfrac{1-5{{\sin }^{2}}x}{{{\cos }^{5}}x{{\sin }^{2}}x}$.
Simplifying we get ${{f}^{'}}\left( x \right)+f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x-5$.
Equating we get ${{f}^{'}}\left( x \right)=\text{cosec}^{2}x,f\left( x \right)\left[ 5\tan x \right]=-5$.
Differentiation of $-\cot x$ is $\text{cosec}^{2}x$. So, we take $f\left( x \right)=-\cot x$.
So, $f\left( x \right)\left[ 5\tan x \right]=\left( -\cot x \right)\left( 5\tan x \right)=-5$
The correct option is D.
Note: We also could have taken ${{f}^{'}}\left( x \right)=-5,f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x$. But in that case $f\left( x \right)$ would have been $f\left( x \right)=-5x$ and $\left( -5x \right)\left[ 5\tan x \right]=-25x\tan x\ne \text{cosec}^{2}x$. So, the assumption ${{f}^{'}}\left( x \right)=-5,f\left( x \right)\left[ 5\tan x \right]=\text{cosec}^{2}x$ is incorrect.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

