
If we are given a determinant \[{{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
2r-1 & y & {{n}^{2}} \\
3r-2 & z & \dfrac{n\left( 3n-1 \right)}{2} \\
\end{matrix} \right|\], then prove that \[\sum\limits_{r=1}^{n}{{{D}_{r}}}=0\].
Answer
233.1k+ views
Hint: Perform row operations on the given determinant, \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}\] to simplify \[{{D}_{r}}\]. Here, \[{{R}_{1}},{{R}_{2}}\] and \[{{R}_{3}}\] denotes first, second and third row respectively. Now, perform a column operation, \[{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}\] and expand the given determinant. Take summation \[\sum\limits_{r=1}^{n}{}\] on both sides and consider n, x, y, z as constants and simplify the summation of \[{{D}_{r}}\]. Use the formula for sum of ‘n’ terms of an A.P. given as: - \[{{S}_{n}}=\dfrac{n}{2}\left( n+1 \right)\] and if k is a constant then \[\sum\limits_{r=1}^{n}{k}=nk\], to get the answer.
Complete step-by-step solution
Here, we have been provided with a determinant expression given as: -
\[\Rightarrow \] \[{{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
2r-1 & y & {{n}^{2}} \\
3r-2 & z & \dfrac{n\left( 3n-1 \right)}{2} \\
\end{matrix} \right|\]
We have to prove, \[\sum\limits_{r=1}^{n}{{{D}_{r}}}=0\].
Now, in the expression of determinant \[{{D}_{r}}\], we have 3 rows and 3 columns. Horizontal lines are rows and vertical lines are columns. We know that performing row and column operations does not change the value of determinant. Therefore, we have,
(i) Performing the operation, \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}\] that means terms of \[~{{R}_{2}}\] is replaced with \[{{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\] is replaced with \[{{R}_{3}}-3{{R}_{1}}\], we get,
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
\left( 2r-1 \right)-2r & y-2x & {{n}^{2}}-2\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\left( 3r-2 \right)-3r & z-3x & \dfrac{n\left( 3n-1 \right)}{2}-3\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\end{matrix} \right|\]
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
-1 & y-2x & -\dfrac{2n}{2} \\
-2 & z-3x & -\dfrac{4n}{2} \\
\end{matrix} \right|\]
Taking (-1) common from second and third row and ‘n’ common from column 3, we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=\left( -1 \right)\times \left( -1 \right)\times \left( n \right)\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
& \Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
\end{align}\]
(ii) Performing the operation, \[{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}\], that means terms of \[{{C}_{1}}\] is replaced with \[{{C}_{1}}-{{C}_{3}}\], we get,
\[\Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r-\left( \dfrac{n+1}{2} \right) & x & \left( \dfrac{n+1}{2} \right) \\
0 & 2x-y & 1 \\
0 & 3x-z & 2 \\
\end{matrix} \right|\]
Now, expanding the determinant we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ \left( 2x-y \right)\times 2-\left( 3x-z \right)\times 1 \right\}-x\times \left( 0\times 2-0\times 1 \right)+\left( \dfrac{n+1}{2} \right)\times \left( 0\times \left( 3x-z \right)-0\times \left( 2x-y \right) \right) \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\left\{ 4x-2y-3x+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ x-2y+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right) \\
\end{align}\]
Taking summation sign both sides, we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=\sum\limits_{r=1}^{n}{n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right)}\]
Since, \[{{D}_{r}}\] is a function of r, therefore n, x, y and z can be considered as constant terms. So, taking these constant terms out of the summation sign, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \sum\limits_{r=1}^{n}{\left( r-\dfrac{n+1}{2} \right)} \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \sum\limits_{r=1}^{n}{r-\sum\limits_{r=1}^{n}{\left( \dfrac{n+1}{2} \right)}} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\sum\limits_{r=1}^{n}{1} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\times \left( 1+1+...ntimes \right) \right] \\
\end{align}\]
Here, 1 + 2 + 3 + …. + n are n terms in A.P. with common difference equal to 1. So, applying the formula sum of ‘n’ terms of an A.P. given as, \[{{S}_{n}}=\dfrac{n\left( n+1 \right)}{2}\], we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \dfrac{n\left( n+1 \right)}{2}-\left( \dfrac{n+1}{2} \right)\times n \right]\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times 0 \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=0 \\
\end{align}\]
Hence, proved.
Note: One may note that we have not expanded the given determinant directly because we have to reduce the calculations. That is why row and column operations are performed. Also, you may note that we have considered n, x, y and z are constants. This is because \[{{D}_{r}}\] denotes this condition. You must remember properties of determinants to solve the above question.
Complete step-by-step solution
Here, we have been provided with a determinant expression given as: -
\[\Rightarrow \] \[{{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
2r-1 & y & {{n}^{2}} \\
3r-2 & z & \dfrac{n\left( 3n-1 \right)}{2} \\
\end{matrix} \right|\]
We have to prove, \[\sum\limits_{r=1}^{n}{{{D}_{r}}}=0\].
Now, in the expression of determinant \[{{D}_{r}}\], we have 3 rows and 3 columns. Horizontal lines are rows and vertical lines are columns. We know that performing row and column operations does not change the value of determinant. Therefore, we have,
(i) Performing the operation, \[{{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\to {{R}_{3}}-3{{R}_{1}}\] that means terms of \[~{{R}_{2}}\] is replaced with \[{{R}_{2}}-2{{R}_{1}}\] and \[{{R}_{3}}\] is replaced with \[{{R}_{3}}-3{{R}_{1}}\], we get,
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
\left( 2r-1 \right)-2r & y-2x & {{n}^{2}}-2\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\left( 3r-2 \right)-3r & z-3x & \dfrac{n\left( 3n-1 \right)}{2}-3\left[ \dfrac{n\left( n+1 \right)}{2} \right] \\
\end{matrix} \right|\]
\[\Rightarrow {{D}_{r}}=\left| \begin{matrix}
r & x & \dfrac{n\left( n+1 \right)}{2} \\
-1 & y-2x & -\dfrac{2n}{2} \\
-2 & z-3x & -\dfrac{4n}{2} \\
\end{matrix} \right|\]
Taking (-1) common from second and third row and ‘n’ common from column 3, we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=\left( -1 \right)\times \left( -1 \right)\times \left( n \right)\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
& \Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r & x & \left( \dfrac{n+1}{2} \right) \\
1 & 2x-y & 1 \\
2 & 3x-z & 2 \\
\end{matrix} \right| \\
\end{align}\]
(ii) Performing the operation, \[{{C}_{1}}\to {{C}_{1}}-{{C}_{3}}\], that means terms of \[{{C}_{1}}\] is replaced with \[{{C}_{1}}-{{C}_{3}}\], we get,
\[\Rightarrow {{D}_{r}}=n\left| \begin{matrix}
r-\left( \dfrac{n+1}{2} \right) & x & \left( \dfrac{n+1}{2} \right) \\
0 & 2x-y & 1 \\
0 & 3x-z & 2 \\
\end{matrix} \right|\]
Now, expanding the determinant we get,
\[\begin{align}
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ \left( 2x-y \right)\times 2-\left( 3x-z \right)\times 1 \right\}-x\times \left( 0\times 2-0\times 1 \right)+\left( \dfrac{n+1}{2} \right)\times \left( 0\times \left( 3x-z \right)-0\times \left( 2x-y \right) \right) \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\left\{ 4x-2y-3x+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\left[ \left( r-\dfrac{n+1}{2} \right)\times \left\{ x-2y+z \right\} \right] \\
& \Rightarrow {{D}_{r}}=n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right) \\
\end{align}\]
Taking summation sign both sides, we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=\sum\limits_{r=1}^{n}{n\times \left( x-2y+z \right)\left( r-\dfrac{n+1}{2} \right)}\]
Since, \[{{D}_{r}}\] is a function of r, therefore n, x, y and z can be considered as constant terms. So, taking these constant terms out of the summation sign, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \sum\limits_{r=1}^{n}{\left( r-\dfrac{n+1}{2} \right)} \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \sum\limits_{r=1}^{n}{r-\sum\limits_{r=1}^{n}{\left( \dfrac{n+1}{2} \right)}} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\sum\limits_{r=1}^{n}{1} \right] \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \left( 1+2+3+...+n \right)-\left( \dfrac{n+1}{2} \right)\times \left( 1+1+...ntimes \right) \right] \\
\end{align}\]
Here, 1 + 2 + 3 + …. + n are n terms in A.P. with common difference equal to 1. So, applying the formula sum of ‘n’ terms of an A.P. given as, \[{{S}_{n}}=\dfrac{n\left( n+1 \right)}{2}\], we get,
\[\Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times \left[ \dfrac{n\left( n+1 \right)}{2}-\left( \dfrac{n+1}{2} \right)\times n \right]\]
Cancelling the like terms, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=n\left( x-2y+z \right)\times 0 \\
& \Rightarrow \sum\limits_{r=1}^{n}{{{D}_{r}}}=0 \\
\end{align}\]
Hence, proved.
Note: One may note that we have not expanded the given determinant directly because we have to reduce the calculations. That is why row and column operations are performed. Also, you may note that we have considered n, x, y and z are constants. This is because \[{{D}_{r}}\] denotes this condition. You must remember properties of determinants to solve the above question.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

