
If the unit vector $\overrightarrow{a}$ makes angle $\dfrac{\pi }{3}$ with $\widehat{i}$, $\dfrac{\pi }{4}$ with $\widehat{j}$ and an acute angle $\theta $ with $\widehat{k}$, then find the value of $\theta $.
Answer
232.8k+ views
Hint: To solve this question, we should know the formula of dot product. If $\overrightarrow{a},\overrightarrow{b}$ are two vectors and the angle between them is $\theta $, the dot product of the vectors a, b is defined as $\overrightarrow{a}.\overrightarrow{b}=\left| a \right|\left| b \right|\cos \theta $. Let us assume the vector $\overrightarrow{a}$ as \[x\widehat{i}+y\widehat{j}+z\widehat{k}\]. We can infer from the question that the angles between the vector $\overrightarrow{a}$ and $\widehat{i}$,$\widehat{j}$ are $\dfrac{\pi }{3}$,$\dfrac{\pi }{4}$ respectively. We can also infer that $\left| a \right|=1$ as $\overrightarrow{a}$ is a unit vector. By using the dot product formula with the two vectors $\widehat{i}$,$\widehat{j}$, we get the values of x, y. We know that $\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$. Using this, we get two values of z. By doing the dot product with $\widehat{k}$ and applying the condition that the angle $\theta $ should be acute, we get unique values of z and $\theta $.
Complete step-by-step solution:
Let us assume the vector $\overrightarrow{a}$ as \[x\widehat{i}+y\widehat{j}+z\widehat{k}\].
Let us consider the dot products of the vector $\overrightarrow{a}$ with $\widehat{i}$,$\widehat{j}$.
The dot product of the vectors a, b is defined as $\overrightarrow{a}.\overrightarrow{b}=\left| a \right|\left| b \right|\cos \theta $.
We know that the vectors $\widehat{i},\widehat{j},\widehat{k}$ are representing unit vectors along x, y, z axis respectively.
$\widehat{i}.\widehat{i}=\left| i \right|\left| i \right|\cos \theta $
As $\widehat{i}$ is a unit vector $\left| i \right|=1$ and the angle between$\widehat{i}$ and $\widehat{i}$ is $\theta ={{0}^{\circ }}$
$\widehat{i}.\widehat{i}=1.1.\cos 0=1$
Similarly,
$\begin{align}
& \widehat{j}.\widehat{j}=1 \\
& \widehat{k}.\widehat{k}=1 \\
\end{align}$
$\widehat{i}.\widehat{j}=\left| i \right|\left| j \right|\cos \theta $
As $\widehat{i}$, $\widehat{j}$ are unit vectors $\left| i \right|=1,\left| j \right|=1$ and the angle between$\widehat{i}$ and $\widehat{j}$ is $\theta ={{90}^{\circ }}$
$\widehat{i}.\widehat{j}=1.1\cos 90=0$
Similarly, dot product of any two vectors of $\widehat{i},\widehat{j},\widehat{k}$ is zero and dot product of the same unit vectors is 1.
Let us consider $\overrightarrow{a}\text{ }.\text{ }\widehat{i}$,
$\overrightarrow{a}.\widehat{i}=\left| a \right|\left| i \right|\cos \dfrac{\pi }{3}$
We know that $\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$, $\left| i \right|=1$
Using them, we get
$\begin{align}
& \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{i}=\dfrac{1}{2} \\
& x\widehat{i}.\widehat{i}+y\widehat{j}.\widehat{i}+z\widehat{k}.\widehat{i}=\dfrac{1}{2} \\
& x=\dfrac{1}{2} \\
\end{align}$
Let us consider $\overrightarrow{a}\text{ }.\text{ }\widehat{j}$,
$\overrightarrow{a}.\widehat{j}=\left| a \right|\left| j \right|\cos \dfrac{\pi }{4}$
We know that $\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$, $\left| j \right|=1$
Using them, we get
$\begin{align}
& \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{j}=\dfrac{1}{\sqrt{2}} \\
& y=\dfrac{1}{\sqrt{2}} \\
\end{align}$
Let us consider $\overrightarrow{a}\text{ }.\text{ }\widehat{k}$,
Let us assume the required angle be $\theta $.
$\overrightarrow{a}.\widehat{k}=\left| a \right|\left| k \right|\cos \theta $
We know that $\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$, $\left| k \right|=1$
Using them, we get
$\begin{align}
& \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{k}=\cos \theta \\
& z=\cos \theta \\
\end{align}$
We know that $\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$. Substituting the values of x and y, we get
$\begin{align}
& \sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{z}^{2}}}=1 \\
& \sqrt{\dfrac{1}{4}+\dfrac{1}{2}+{{z}^{2}}}=1 \\
& {{z}^{2}}+\dfrac{3}{4}=1 \\
& {{z}^{2}}=\dfrac{1}{4} \\
& z=\pm \dfrac{1}{2} \\
\end{align}$
But we know that $z=\cos \theta $ and $\theta $ is acute. So,
$\cos \theta >0$
So, we get
$\begin{align}
& z=\cos \theta =\dfrac{1}{2} \\
& \theta =\dfrac{\pi }{3} \\
\end{align}$
$\therefore $ The angle between $\overrightarrow{a}$ and $\widehat{k}$ is $\dfrac{\pi }{3}$
Note: There is a property in vectors that if a vector $\overrightarrow{a}$ makes angles ${{\theta }_{1}},{{\theta }_{2}},{{\theta }_{3}}$ with $\widehat{\hat{i}},\widehat{j},\widehat{k}$ respectively, then ${{\cos }^{2}}{{\theta }_{1}}+{{\cos }^{2}}{{\theta }_{2}}+{{\cos }^{2}}{{\theta }_{3}}=1$. Using this relation, we can write that $\begin{align}
& {{\cos }^{2}}\dfrac{\pi }{3}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\theta =1 \\
& {{\cos }^{2}}\theta =1-\dfrac{1}{2}-\dfrac{1}{4} \\
& {{\cos }^{2}}\theta =\dfrac{1}{4} \\
& \cos \theta =\pm \dfrac{1}{2} \\
\end{align}$
As $\theta $ is acute angle, we can write that
$\begin{align}
& \cos \theta =\dfrac{1}{2} \\
& \theta =\dfrac{\pi }{3} \\
\end{align}$
Complete step-by-step solution:
Let us assume the vector $\overrightarrow{a}$ as \[x\widehat{i}+y\widehat{j}+z\widehat{k}\].
Let us consider the dot products of the vector $\overrightarrow{a}$ with $\widehat{i}$,$\widehat{j}$.
The dot product of the vectors a, b is defined as $\overrightarrow{a}.\overrightarrow{b}=\left| a \right|\left| b \right|\cos \theta $.
We know that the vectors $\widehat{i},\widehat{j},\widehat{k}$ are representing unit vectors along x, y, z axis respectively.
$\widehat{i}.\widehat{i}=\left| i \right|\left| i \right|\cos \theta $
As $\widehat{i}$ is a unit vector $\left| i \right|=1$ and the angle between$\widehat{i}$ and $\widehat{i}$ is $\theta ={{0}^{\circ }}$
$\widehat{i}.\widehat{i}=1.1.\cos 0=1$
Similarly,
$\begin{align}
& \widehat{j}.\widehat{j}=1 \\
& \widehat{k}.\widehat{k}=1 \\
\end{align}$
$\widehat{i}.\widehat{j}=\left| i \right|\left| j \right|\cos \theta $
As $\widehat{i}$, $\widehat{j}$ are unit vectors $\left| i \right|=1,\left| j \right|=1$ and the angle between$\widehat{i}$ and $\widehat{j}$ is $\theta ={{90}^{\circ }}$
$\widehat{i}.\widehat{j}=1.1\cos 90=0$
Similarly, dot product of any two vectors of $\widehat{i},\widehat{j},\widehat{k}$ is zero and dot product of the same unit vectors is 1.
Let us consider $\overrightarrow{a}\text{ }.\text{ }\widehat{i}$,
$\overrightarrow{a}.\widehat{i}=\left| a \right|\left| i \right|\cos \dfrac{\pi }{3}$
We know that $\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$, $\left| i \right|=1$
Using them, we get
$\begin{align}
& \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{i}=\dfrac{1}{2} \\
& x\widehat{i}.\widehat{i}+y\widehat{j}.\widehat{i}+z\widehat{k}.\widehat{i}=\dfrac{1}{2} \\
& x=\dfrac{1}{2} \\
\end{align}$
Let us consider $\overrightarrow{a}\text{ }.\text{ }\widehat{j}$,
$\overrightarrow{a}.\widehat{j}=\left| a \right|\left| j \right|\cos \dfrac{\pi }{4}$
We know that $\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$, $\left| j \right|=1$
Using them, we get
$\begin{align}
& \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{j}=\dfrac{1}{\sqrt{2}} \\
& y=\dfrac{1}{\sqrt{2}} \\
\end{align}$
Let us consider $\overrightarrow{a}\text{ }.\text{ }\widehat{k}$,
Let us assume the required angle be $\theta $.
$\overrightarrow{a}.\widehat{k}=\left| a \right|\left| k \right|\cos \theta $
We know that $\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$, $\left| k \right|=1$
Using them, we get
$\begin{align}
& \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{k}=\cos \theta \\
& z=\cos \theta \\
\end{align}$
We know that $\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1$. Substituting the values of x and y, we get
$\begin{align}
& \sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{z}^{2}}}=1 \\
& \sqrt{\dfrac{1}{4}+\dfrac{1}{2}+{{z}^{2}}}=1 \\
& {{z}^{2}}+\dfrac{3}{4}=1 \\
& {{z}^{2}}=\dfrac{1}{4} \\
& z=\pm \dfrac{1}{2} \\
\end{align}$
But we know that $z=\cos \theta $ and $\theta $ is acute. So,
$\cos \theta >0$
So, we get
$\begin{align}
& z=\cos \theta =\dfrac{1}{2} \\
& \theta =\dfrac{\pi }{3} \\
\end{align}$
$\therefore $ The angle between $\overrightarrow{a}$ and $\widehat{k}$ is $\dfrac{\pi }{3}$
Note: There is a property in vectors that if a vector $\overrightarrow{a}$ makes angles ${{\theta }_{1}},{{\theta }_{2}},{{\theta }_{3}}$ with $\widehat{\hat{i}},\widehat{j},\widehat{k}$ respectively, then ${{\cos }^{2}}{{\theta }_{1}}+{{\cos }^{2}}{{\theta }_{2}}+{{\cos }^{2}}{{\theta }_{3}}=1$. Using this relation, we can write that $\begin{align}
& {{\cos }^{2}}\dfrac{\pi }{3}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\theta =1 \\
& {{\cos }^{2}}\theta =1-\dfrac{1}{2}-\dfrac{1}{4} \\
& {{\cos }^{2}}\theta =\dfrac{1}{4} \\
& \cos \theta =\pm \dfrac{1}{2} \\
\end{align}$
As $\theta $ is acute angle, we can write that
$\begin{align}
& \cos \theta =\dfrac{1}{2} \\
& \theta =\dfrac{\pi }{3} \\
\end{align}$
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

