
If the slope of one of the lines represented by $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ be the square of the other, then $\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}$ is equal to
A. \[{{a}^{2}}b+a{{b}^{2}}-6abh+8{{h}^{3}}=0\]
B. \[{{a}^{2}}b+a{{b}^{2}}+6abh+8{{h}^{3}}=0\]
C. \[{{a}^{2}}b+a{{b}^{2}}-3abh+8{{h}^{3}}=0\]
D. \[{{a}^{2}}b+a{{b}^{2}}-6abh-8{{h}^{3}}=0\]
Answer
232.8k+ views
Hint: For a straight line represented by $y=mx+c$ the slope of the straight line is $m$. Through the value of slope we can also get the equation of the straight line.
Formula used: $a{{x}^{2}}+2hxy+b{{y}^{2}}$
Complete step by step solution: The given equation is $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$.
Now let the slope of one of the pairs of straight lines is $m$. Given that the slope of the other straight line is square of the one line. Thus the slope of the other line will be ${{m}^{2}}$ .
Now the equation of the straight lines in terms of slope can be given as-
$(y-mx)(y-{{m}^{2}}x)=0$
Simplifying the equation we get-
$
{{y}^{2}}-myx-{{m}^{2}}yx+{{m}^{3}}{{x}^{2}}=0 \\
{{y}^{2}}-xy\left( m+{{m}^{2}} \right)+{{m}^{3}}{{x}^{2}}=0 \\
$
Comparing it with the given equation of the straight line that is $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$we get-
$a={{m}^{3}},b=1,h=-\dfrac{\left( m+{{m}^{2}} \right)}{2}$
Putting the value of $a,b,h$ in $\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}$ we get-
$
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2({{m}^{3}}+1)}{-\left( m+{{m}^{2}} \right)}+\dfrac{8{{\left( m+{{m}^{2}} \right)}^{2}}}{4{{m}^{3}}} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2({{m}^{3}}+1)}{-\left( m+{{m}^{2}} \right)}+\dfrac{8{{m}^{2}}{{\left( 1+m \right)}^{2}}}{4{{m}^{3}}} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2({{m}^{3}}+1)}{-\left( m+{{m}^{2}} \right)}+\dfrac{2{{\left( 1+m \right)}^{2}}}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2(m+1)\left( 1-m+{{m}^{2}} \right)}{-m\left( 1+m \right)}+\dfrac{2{{\left( 1+m \right)}^{2}}}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2\left( 1-m+{{m}^{2}} \right)}{-m}+\dfrac{2{{\left( 1+m \right)}^{2}}}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2\left( -1+m-{{m}^{2}}+1+{{m}^{2}}+2m \right)}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2\times \left( 3m \right)}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=6 \\
{{a}^{2}}b+a{{b}^{2}}-6abh+8{{h}^{3}}=0 \\
$
Thus we can write that if the slope of one of the lines represented by $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ be the square of the other, then $\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}$ is equal to \[{{a}^{2}}b+a{{b}^{2}}-6abh+8{{h}^{3}}=0\].
Thus, Option (A) is correct.
Note: The other method to solve this equation is to determine the sum of the two slopes which is equal to $\dfrac{-2h}{b}$ and multiplication of the two slopes which is equal to $\dfrac{a}{b}$ . From the general form of straight line and comparing $\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}$ we can get the values of $a,b,h$ .
Formula used: $a{{x}^{2}}+2hxy+b{{y}^{2}}$
Complete step by step solution: The given equation is $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$.
Now let the slope of one of the pairs of straight lines is $m$. Given that the slope of the other straight line is square of the one line. Thus the slope of the other line will be ${{m}^{2}}$ .
Now the equation of the straight lines in terms of slope can be given as-
$(y-mx)(y-{{m}^{2}}x)=0$
Simplifying the equation we get-
$
{{y}^{2}}-myx-{{m}^{2}}yx+{{m}^{3}}{{x}^{2}}=0 \\
{{y}^{2}}-xy\left( m+{{m}^{2}} \right)+{{m}^{3}}{{x}^{2}}=0 \\
$
Comparing it with the given equation of the straight line that is $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$we get-
$a={{m}^{3}},b=1,h=-\dfrac{\left( m+{{m}^{2}} \right)}{2}$
Putting the value of $a,b,h$ in $\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}$ we get-
$
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2({{m}^{3}}+1)}{-\left( m+{{m}^{2}} \right)}+\dfrac{8{{\left( m+{{m}^{2}} \right)}^{2}}}{4{{m}^{3}}} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2({{m}^{3}}+1)}{-\left( m+{{m}^{2}} \right)}+\dfrac{8{{m}^{2}}{{\left( 1+m \right)}^{2}}}{4{{m}^{3}}} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2({{m}^{3}}+1)}{-\left( m+{{m}^{2}} \right)}+\dfrac{2{{\left( 1+m \right)}^{2}}}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2(m+1)\left( 1-m+{{m}^{2}} \right)}{-m\left( 1+m \right)}+\dfrac{2{{\left( 1+m \right)}^{2}}}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2\left( 1-m+{{m}^{2}} \right)}{-m}+\dfrac{2{{\left( 1+m \right)}^{2}}}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2\left( -1+m-{{m}^{2}}+1+{{m}^{2}}+2m \right)}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=\dfrac{2\times \left( 3m \right)}{m} \\
\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}=6 \\
{{a}^{2}}b+a{{b}^{2}}-6abh+8{{h}^{3}}=0 \\
$
Thus we can write that if the slope of one of the lines represented by $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ be the square of the other, then $\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}$ is equal to \[{{a}^{2}}b+a{{b}^{2}}-6abh+8{{h}^{3}}=0\].
Thus, Option (A) is correct.
Note: The other method to solve this equation is to determine the sum of the two slopes which is equal to $\dfrac{-2h}{b}$ and multiplication of the two slopes which is equal to $\dfrac{a}{b}$ . From the general form of straight line and comparing $\dfrac{a+b}{h}+\dfrac{8{{h}^{2}}}{ab}$ we can get the values of $a,b,h$ .
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

