
If the sides of a triangle are in the ratio \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\], then find the largest angle of the triangle.
A. \[{60^ \circ }\]
B. \[{75^ \circ }\]
C. \[{90^ \circ }\]
D. \[{120^ \circ }\]
Answer
233.1k+ views
Hint: From the ratio, we will find the length of the sides. Using the sides and cosine law, we will find all angles of the triangle. Then we will find the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Formula used:
Cosine Law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Complete step by step solution:
Given that, the ratio of sides of a triangle is \[2:\sqrt 6 :\left( {\sqrt 3 + 1} \right)\].
Assume that the sides of the triangle are \[a = 2k\], \[b = \sqrt 6 k\], and \[c = \left( {\sqrt 3 + 1} \right)k\]
Now calculating the angle A using cosine law \[{a^2} = {b^2} + {c^2} - 2bc\cos A\]:
\[{\left( {2k} \right)^2} = {\left( {\sqrt 6 k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {\sqrt 6 } \right)k \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos A\]
\[ \Rightarrow 4{k^2} = 6{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 2 \cdot \sqrt 6 \left( {\sqrt 3 + 1} \right){k^2}\cos A\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 4 = 6 + 3 + 2\sqrt 3 + 1 - 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Simplify the above equation:
\[ \Rightarrow 6 + 3 + 2\sqrt 3 + 1 - 4 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
\[ \Rightarrow 6 + 2\sqrt 3 = 2\sqrt 6 \left( {\sqrt 3 + 1} \right)\cos A\]
Divide both sides by \[2\sqrt 6 \left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 + 1} \right)}}{{2\sqrt 6 \left( {\sqrt 3 + 1} \right)}} = \cos A\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\sqrt 3 }}{{\sqrt 3 \cdot \sqrt 2 }} = \cos A\]
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} = \cos A\]
\[ \Rightarrow A = {45^ \circ }\]
Now calculating the angle B using cosine law \[{b^2} = {a^2} + {c^2} - 2ac\cos B\]:
\[{\left( {\sqrt 6 k} \right)^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 3 + 1} \right)^2}{k^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 3 + 1} \right)k \cdot \cos B\]
\[ \Rightarrow 6{k^2} = 4{k^2} + \left( {3 + 2\sqrt 3 + 1} \right){k^2} - 4\left( {\sqrt 3 + 1} \right){k^2}\cos B\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow 6 = 4 + \left( {3 + 2\sqrt 3 + 1} \right) - 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 4 + 3 + 2\sqrt 3 + 1 - 6 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Simplify the above equation:
\[ \Rightarrow 2 + 2\sqrt 3 = 4\left( {\sqrt 3 + 1} \right)\cos B\]
\[ \Rightarrow 2\left( {1 + \sqrt 3 } \right) = 4\left( {\sqrt 3 + 1} \right)\cos B\]
Divide both sides by \[4\left( {\sqrt 3 + 1} \right)\]
\[ \Rightarrow \dfrac{{2\left( {1 + \sqrt 3 } \right)}}{{4\left( {\sqrt 3 + 1} \right)}} = \cos B\]
Cancel out common terms
\[ \Rightarrow \dfrac{1}{2} = \cos B\]
\[ \Rightarrow B = {60^ \circ }\]
Now calculating the angle C using cosine law \[{c^2} = {a^2} + {b^2} - 2ab\cos C\]:
\[{\left( {\sqrt 3 + 1} \right)^2}{k^2} = {\left( {2k} \right)^2} + {\left( {\sqrt 6 k} \right)^2} - 2 \cdot \left( {2k} \right) \cdot \left( {\sqrt 6 k} \right) \cdot \cos C\]
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right){k^2} = 4{k^2} + 6{k^2} - 4\sqrt 6 {k^2}\cos C\]
Cancel out \[{k^2}\] from both sides
\[ \Rightarrow \left( {3 + 2\sqrt 3 + 1} \right) = 4 + 6 - 4\sqrt 6 \cos C\]
\[ \Rightarrow \left( {4 + 2\sqrt 3 } \right) = 10 - 4\sqrt 6 \cos C\]
Simplify the above equation:
\[ \Rightarrow 10 - 4 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
\[ \Rightarrow 6 - 2\sqrt 3 = 4\sqrt 6 \cos C\]
Divide both sides by \[4\sqrt 6 \]
\[ \Rightarrow \dfrac{{2\sqrt 3 \left( {\sqrt 3 - 1} \right)}}{{4\sqrt 6 }} = \cos C\]
Cancel out common terms
\[ \Rightarrow \dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos C\]
\[ \Rightarrow C = {75^ \circ }\] [ since \[\dfrac{{\left( {\sqrt 3 - 1} \right)}}{{2\sqrt 2 }} = \cos {75^ \circ }\]]
Hence the largest angle of the triangle is \[{75^ \circ }\].
Hence option B is the correct option.
Note: Students often make mistakes to solve this question. They calculate only one angle and take that angle as the largest angle. But here we need to find all angles, then identify which one is the largest angle.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

