
If the sides of a triangle are in A.P., then the cotangent of its half the angles will be in
A. H.P.
B. G.P.
C. A.P.
D. None of these
Answer
233.1k+ views
Hint: First we will assume that the cotangent of its half the angles are in A.P. Then check whether the progression is in A.P. or not using different laws of half angles of cosines and sine.
Formula used:
If a, b, c are in A.P., then a + c =2b.
Half angle formula for an oblique triangle
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Complete step by step solution:
Assume that, \[\cot \dfrac{A}{2}\], \[\cot \dfrac{B}{2}\], \[\cot \dfrac{C}{2}\]are in A.P.
Thus, \[\cot \dfrac{A}{2} + \cot \dfrac{C}{2} = 2\cot \dfrac{B}{2}\]
L.H.S\[ = \cot \dfrac{A}{2} + \cot \dfrac{C}{2}\]
Apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ = \dfrac{{\cos \dfrac{A}{2}}}{{\sin \dfrac{A}{2}}} + \dfrac{{\cos \dfrac{C}{2}}}{{\sin \dfrac{C}{2}}}\]
Now we will apply the half angle formula
\[ = \dfrac{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }} + \dfrac{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}\]
\[ = \dfrac{{\sqrt {s\left( {s - a} \right)} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }} + \dfrac{{\sqrt {s\left( {s - c} \right)} }}{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}\]
\[ = \dfrac{{\sqrt {s{{\left( {s - a} \right)}^2}} + \sqrt {s{{\left( {s - c} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {\left( {s - a} \right) + \left( {s - c} \right)} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {2s - a - c} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
Given that, a,b,c are in AP, thus \[a + c = 2b\]
\[ = \dfrac{{\sqrt s \left( {2s - 2b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt s \left( {s - b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s{{\left( {s - b} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
We know that, \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] and \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \] . So \[\cot \dfrac{B}{2} = \dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\cot \dfrac{B}{2}\]
Thus, our assumption is correct.
Hence option C is the correct answer.
Note: Students often make the mistake of considering that the cotangent of its half the angles in G.P or H.P. First, we will check it for A.P. Then after that we will check other progressions.
Formula used:
If a, b, c are in A.P., then a + c =2b.
Half angle formula for an oblique triangle
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{A}{2} = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \]
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Complete step by step solution:
Assume that, \[\cot \dfrac{A}{2}\], \[\cot \dfrac{B}{2}\], \[\cot \dfrac{C}{2}\]are in A.P.
Thus, \[\cot \dfrac{A}{2} + \cot \dfrac{C}{2} = 2\cot \dfrac{B}{2}\]
L.H.S\[ = \cot \dfrac{A}{2} + \cot \dfrac{C}{2}\]
Apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[ = \dfrac{{\cos \dfrac{A}{2}}}{{\sin \dfrac{A}{2}}} + \dfrac{{\cos \dfrac{C}{2}}}{{\sin \dfrac{C}{2}}}\]
Now we will apply the half angle formula
\[ = \dfrac{{\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} }}{{\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} }} + \dfrac{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}\]
\[ = \dfrac{{\sqrt {s\left( {s - a} \right)} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)} }} + \dfrac{{\sqrt {s\left( {s - c} \right)} }}{{\sqrt {\left( {s - a} \right)\left( {s - b} \right)} }}\]
\[ = \dfrac{{\sqrt {s{{\left( {s - a} \right)}^2}} + \sqrt {s{{\left( {s - c} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {\left( {s - a} \right) + \left( {s - c} \right)} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = \dfrac{{\sqrt s \left[ {2s - a - c} \right]}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
Given that, a,b,c are in AP, thus \[a + c = 2b\]
\[ = \dfrac{{\sqrt s \left( {2s - 2b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt s \left( {s - b} \right)}}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s{{\left( {s - b} \right)}^2}} }}{{\sqrt {\left( {s - b} \right)\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
We know that, \[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \] and \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \] . So \[\cot \dfrac{B}{2} = \dfrac{{\sqrt {s\left( {s - b} \right)} }}{{\sqrt {\left( {s - c} \right)\left( {s - a} \right)} }}\]
\[ = 2\cot \dfrac{B}{2}\]
Thus, our assumption is correct.
Hence option C is the correct answer.
Note: Students often make the mistake of considering that the cotangent of its half the angles in G.P or H.P. First, we will check it for A.P. Then after that we will check other progressions.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

