
If the relation between ‘x’, ‘y’ and ‘z’ is defined as $x=y\cos \dfrac{2\pi }{3}=z\cos \dfrac{4\pi }{3}$, then find the value of xy + yz + zx?
(a) –1
(b) 0
(c) 1
(d) 2
Answer
512.4k+ views
Hint: We start solving the problem by converting variables ‘y’ and ‘z’ in terms of ‘x’. Once, we convert every variable in terms of ‘x’, we start calculating the terms xy, yz and zx separately. We add them to each other later to get the required result.
Complete step by step answer:
We have given the relation between ‘x’, ‘y’ and ‘z’ as $x=y\cos \dfrac{2\pi }{3}=z\cos \dfrac{4\pi }{3}$. We need to find the value of xy + yz + zx.
Let us first find all the variables in terms of ‘x’. We first convert ‘y’ in terms of ‘x’.
$\Rightarrow $ \[x=y\cos \dfrac{2\pi }{3}\].
$\Rightarrow $ $x=y\times \left( \dfrac{-1}{2} \right)$.
$\Rightarrow $ $\dfrac{x}{\dfrac{-1}{2}}=y$.
$\Rightarrow $ y= –2x ---(1).
$\Rightarrow $ $x=z\cos \dfrac{4\pi }{3}$.
$\Rightarrow $ $x=z\times \dfrac{-1}{2}$.
$\Rightarrow $ $z=\dfrac{x}{\dfrac{-1}{2}}$.
$\Rightarrow $ z=-2x ---(2).
We first find the values of xy, yz, zx and then add all together.
$\Rightarrow $ xy = x.(–2x).
$\Rightarrow $ $xy=-2{{x}^{2}}$ ---(3).
$\Rightarrow $ yz = (–2x).(–2x).
$\Rightarrow $ $yz=4{{x}^{2}}$ ---(4).
$\Rightarrow $ zx = (–2x).x.
$\Rightarrow $ $zx=-2{{x}^{2}}$ ---(5).
Now we find the value of xy + yz + zx by using the obtained values from (3), (4) and (5).
$\Rightarrow $ $xy+yz+zx=-2{{x}^{2}}+4{{x}^{2}}-2{{x}^{2}}$.
$\Rightarrow $ xy + yz + zx = 0.
∴ The value of xy + yz + zx is 0.
So, the correct answer is “Option B”.
Note: We should not confuse with the values of cosine function while doing the problem. We should not make any calculation mistakes while solving the problem. Similarly, we can expect problems to find the xyz, x + y + z.
Complete step by step answer:
We have given the relation between ‘x’, ‘y’ and ‘z’ as $x=y\cos \dfrac{2\pi }{3}=z\cos \dfrac{4\pi }{3}$. We need to find the value of xy + yz + zx.
Let us first find all the variables in terms of ‘x’. We first convert ‘y’ in terms of ‘x’.
$\Rightarrow $ \[x=y\cos \dfrac{2\pi }{3}\].
$\Rightarrow $ $x=y\times \left( \dfrac{-1}{2} \right)$.
$\Rightarrow $ $\dfrac{x}{\dfrac{-1}{2}}=y$.
$\Rightarrow $ y= –2x ---(1).
$\Rightarrow $ $x=z\cos \dfrac{4\pi }{3}$.
$\Rightarrow $ $x=z\times \dfrac{-1}{2}$.
$\Rightarrow $ $z=\dfrac{x}{\dfrac{-1}{2}}$.
$\Rightarrow $ z=-2x ---(2).
We first find the values of xy, yz, zx and then add all together.
$\Rightarrow $ xy = x.(–2x).
$\Rightarrow $ $xy=-2{{x}^{2}}$ ---(3).
$\Rightarrow $ yz = (–2x).(–2x).
$\Rightarrow $ $yz=4{{x}^{2}}$ ---(4).
$\Rightarrow $ zx = (–2x).x.
$\Rightarrow $ $zx=-2{{x}^{2}}$ ---(5).
Now we find the value of xy + yz + zx by using the obtained values from (3), (4) and (5).
$\Rightarrow $ $xy+yz+zx=-2{{x}^{2}}+4{{x}^{2}}-2{{x}^{2}}$.
$\Rightarrow $ xy + yz + zx = 0.
∴ The value of xy + yz + zx is 0.
So, the correct answer is “Option B”.
Note: We should not confuse with the values of cosine function while doing the problem. We should not make any calculation mistakes while solving the problem. Similarly, we can expect problems to find the xyz, x + y + z.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Why is insulin not administered orally to a diabetic class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How do you convert from joules to electron volts class 12 physics CBSE

Define Vant Hoff factor How is it related to the degree class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE
