
If the functions $p\left( x \right),q\left( x \right),r\left( x \right)$ are three polynomials of degree 2, then prove that
$\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$ is independent of x.
Answer
577.2k+ views
Hint: To solve this question, we should the way to differentiate a determinant. Let us consider the whole determinant as $f\left( x \right)$. For a function $v\left( x \right)$ such that
$v\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|$
$v'\left( x \right)$ is defined as
$v'\left( x \right)=\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s'\left( x \right) & t'\left( x \right) & u'\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w'\left( x \right) & x'\left( x \right) & y'\left( x \right) \\
\end{matrix} \right|$
Using this formula on the equation
$f\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$
and the property that the third derivative of a second order polynomial is zero, we get that $f'\left( x \right)=0$.
This means that f(x) is a constant function and it doesn’t depend on x.
Complete step-by-step answer:
Let us consider a function $v\left( x \right)$ such that,
$v\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|$
Let us consider the derivative of $v\left( x \right)$. $v'\left( x \right)$ is defined as
$v'\left( x \right)=\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s'\left( x \right) & t'\left( x \right) & u'\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w'\left( x \right) & x'\left( x \right) & y'\left( x \right) \\
\end{matrix} \right|\to \left( 1 \right)$
Let us consider the determinant given in the question as f(x).
$f\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$
Let us consider differentiating the function f(x), from equation-1, we get
$f'\left( x \right)=\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right|\to \left( 2 \right)$
We know the property of determinants that the value of determinant having any two rows or columns equal is zero.
$v\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|=0$
Using this property in equation-2, we get
In the determinant $\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$, the corresponding terms of the first and second rows are equal. Similarly, in the determinant $\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$, the terms of the second and third row are equal.
$\begin{align}
& f'\left( x \right)=0+0+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right| \\
& f'\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right|\to \left( 3 \right) \\
\end{align}$
Let us consider a second order polynomial in x
$h(x)=a{{x}^{2}}+bx+c$.
Differentiate $h\left( x \right)$ until its third derivative.
$\begin{align}
& h(x)=a{{x}^{2}}+bx+c \\
& h'(x)=2ax+b \\
& h''\left( x \right)=2a \\
& h'''\left( x \right)=0 \\
\end{align}$
This tells us that the third derivative of any second order polynomial in x is zero.
Using this relation in equation-3, p(x), q(x), r(x) are second degree polynomials, we get
$f'\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
0 & 0 & 0 \\
\end{matrix} \right|$
We know that in a determinant, if any of the rows or columns has all zeros, the determinant value is also zero.
So, we get
$f'(x)=0$
Integrating on both sides with respect to x, we get
$\begin{align}
& \int{f'(x)}=\int{0} \\
& f\left( x \right)=c \\
\end{align}$
We got the value of f(x) as constant which means that the function f(x) is independent of x.
$\therefore $Hence proved the statement that f(x) is independent of x.
Note: Some students tend to expand the determinant and then try to differentiate the function which leads to a confusion. Instead using the above mentioned differentiation property reduces the complexity. After getting the first two determinants to zero, some students cannot proceed from $f'\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right|$ as they overlook that all the functions p(x), q(x), r(x) are of second degree. So, each and every word in the question is important.
$v\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|$
$v'\left( x \right)$ is defined as
$v'\left( x \right)=\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s'\left( x \right) & t'\left( x \right) & u'\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w'\left( x \right) & x'\left( x \right) & y'\left( x \right) \\
\end{matrix} \right|$
Using this formula on the equation
$f\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$
and the property that the third derivative of a second order polynomial is zero, we get that $f'\left( x \right)=0$.
This means that f(x) is a constant function and it doesn’t depend on x.
Complete step-by-step answer:
Let us consider a function $v\left( x \right)$ such that,
$v\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|$
Let us consider the derivative of $v\left( x \right)$. $v'\left( x \right)$ is defined as
$v'\left( x \right)=\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s'\left( x \right) & t'\left( x \right) & u'\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
s\left( x \right) & t\left( x \right) & u\left( x \right) \\
w'\left( x \right) & x'\left( x \right) & y'\left( x \right) \\
\end{matrix} \right|\to \left( 1 \right)$
Let us consider the determinant given in the question as f(x).
$f\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$
Let us consider differentiating the function f(x), from equation-1, we get
$f'\left( x \right)=\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right|\to \left( 2 \right)$
We know the property of determinants that the value of determinant having any two rows or columns equal is zero.
$v\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
w\left( x \right) & x\left( x \right) & y\left( x \right) \\
\end{matrix} \right|=0$
Using this property in equation-2, we get
In the determinant $\left| \begin{matrix}
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$, the corresponding terms of the first and second rows are equal. Similarly, in the determinant $\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
p''\left( x \right) & q''\left( x \right) & r''\left( x \right) \\
\end{matrix} \right|$, the terms of the second and third row are equal.
$\begin{align}
& f'\left( x \right)=0+0+\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right| \\
& f'\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right|\to \left( 3 \right) \\
\end{align}$
Let us consider a second order polynomial in x
$h(x)=a{{x}^{2}}+bx+c$.
Differentiate $h\left( x \right)$ until its third derivative.
$\begin{align}
& h(x)=a{{x}^{2}}+bx+c \\
& h'(x)=2ax+b \\
& h''\left( x \right)=2a \\
& h'''\left( x \right)=0 \\
\end{align}$
This tells us that the third derivative of any second order polynomial in x is zero.
Using this relation in equation-3, p(x), q(x), r(x) are second degree polynomials, we get
$f'\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
0 & 0 & 0 \\
\end{matrix} \right|$
We know that in a determinant, if any of the rows or columns has all zeros, the determinant value is also zero.
So, we get
$f'(x)=0$
Integrating on both sides with respect to x, we get
$\begin{align}
& \int{f'(x)}=\int{0} \\
& f\left( x \right)=c \\
\end{align}$
We got the value of f(x) as constant which means that the function f(x) is independent of x.
$\therefore $Hence proved the statement that f(x) is independent of x.
Note: Some students tend to expand the determinant and then try to differentiate the function which leads to a confusion. Instead using the above mentioned differentiation property reduces the complexity. After getting the first two determinants to zero, some students cannot proceed from $f'\left( x \right)=\left| \begin{matrix}
p\left( x \right) & q\left( x \right) & r\left( x \right) \\
p'\left( x \right) & q'\left( x \right) & r'\left( x \right) \\
p'''\left( x \right) & q'''\left( x \right) & r'''\left( x \right) \\
\end{matrix} \right|$ as they overlook that all the functions p(x), q(x), r(x) are of second degree. So, each and every word in the question is important.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

