
If the function $f\left( x \right)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ and $g\left( x \right)$ is a one-one function defined in $R\to R$, then $\left( gof \right)\left( x \right)$ is a
A. One-one
B. Onto
C. Constant function
D. Periodic with fundamental period $\pi $
Answer
578.1k+ views
Hint: To solve this problem, we should know the formulae related to the trigonometric ratios. We know that for the given angles A and B, $\cos A\cos B=\dfrac{\cos \left( A+B \right)+\cos \left( A-B \right)}{2}$ and ${{\sin }^{2}}A=\dfrac{1-\cos 2A}{2}$. Using these two formulae, we rewrite the function $f\left( x \right)$ and we get a relation that $f\left( x \right)=c$ which is a constant function. We can infer from this that $\left( gof \right)\left( x \right)$ is a constant function because $g\left( x \right)$ is a one-one function.
Complete step by step answer:
Let us consider $f\left( x \right)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ which is given in the question. We know the formulae
We know that for the given angles A and B,
$\cos A\cos B=\dfrac{\cos \left( A+B \right)+\cos \left( A-B \right)}{2}\to \left( 1 \right)$
${{\sin }^{2}}A=\dfrac{1-\cos 2A}{2}\to \left( 2 \right)$.
Using equation-1 , we can write $\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ as
A = $x$, B = $x+\dfrac{\pi }{3}$
$\begin{align}
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( x+x+\dfrac{\pi }{3} \right)+\cos \left( x-x-\dfrac{\pi }{3} \right)}{2} \\
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)+\cos \left( -\dfrac{\pi }{3} \right)}{2} \\
\end{align}$
We know that $\cos \left( -\theta \right)=\cos \theta $, the above equation can be written as
$\begin{align}
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)+\cos \left( \dfrac{\pi }{3} \right)}{2} \\
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}+\dfrac{1}{4}\to \left( 3 \right) \\
\end{align}$
Using equation-2, we can write ${{\sin }^{2}}x$and ${{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)$ as
$\begin{align}
& {{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} \\
& {{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)=\dfrac{1-\cos 2\left( x+\dfrac{\pi }{3} \right)}{2} \\
\end{align}$
Using these relations, f(x) becomes
$\begin{align}
& f\left( x \right)=\dfrac{1-\cos 2x}{2}+\dfrac{1-\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}+\dfrac{1}{4} \\
& f\left( x \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\left( \dfrac{\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2} \right) \\
\end{align}$
We know that $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Let us consider $\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)$, we get
\[\begin{align}
& \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=2\cos \left( \dfrac{2x+2x+\dfrac{2\pi }{3}}{2} \right)\cos \left( \dfrac{2x-2x-\dfrac{2\pi }{3}}{2} \right) \\
& \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=2\cos \left( 2x+\dfrac{\pi }{3} \right)\cos \left( \dfrac{\pi }{3} \right)=2\cos \left( 2x+\dfrac{\pi }{3} \right)\times \dfrac{1}{2}=\cos \left( 2x+\dfrac{\pi }{3} \right) \\
& \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=\cos \left( 2x+\dfrac{\pi }{3} \right) \\
\end{align}\]
Using this result in f(x), we get
$\begin{align}
& f\left( x \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\left( \dfrac{\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2} \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}=\dfrac{5}{4} \\
& f\left( x \right)=\dfrac{5}{4} \\
\end{align}$
We can infer that the function f(x) is a constant function.
In the question it is given that g(x) is a one-one function which means that for a given value of x, there is only one functional value corresponding to the function g(x).
In the question, we are asked about the nature of $gof(x)$, which means that we are asked about $g\left( f\left( x \right) \right)$.
We know that $f\left( x \right)=\dfrac{5}{4}$, we can write $g\left( f\left( x \right) \right)$ as
$g\left( f\left( x \right) \right)=g\left( \dfrac{5}{4} \right)$.
As g(x) is a one-one function, for the value of $\dfrac{5}{4}$, we get a unique functional value which is also a constant. So, we can infer that $g\left( f\left( x \right) \right)$ is a constant function.
$\therefore $ $g\left( f\left( x \right) \right)$ is a constant function.
So, the correct answer is “Option C”.
Note: Students can make a mistake by thinking that gof(x) is also a one-one function because the function g(x) is a one-one function without doing any calculation. The value of gof(x) also depends on the nature of f(x) and not just g(x). This question is an example of this scenario in which f(x) became a constant function and the function gof(x) became a constant function.
Complete step by step answer:
Let us consider $f\left( x \right)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ which is given in the question. We know the formulae
We know that for the given angles A and B,
$\cos A\cos B=\dfrac{\cos \left( A+B \right)+\cos \left( A-B \right)}{2}\to \left( 1 \right)$
${{\sin }^{2}}A=\dfrac{1-\cos 2A}{2}\to \left( 2 \right)$.
Using equation-1 , we can write $\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ as
A = $x$, B = $x+\dfrac{\pi }{3}$
$\begin{align}
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( x+x+\dfrac{\pi }{3} \right)+\cos \left( x-x-\dfrac{\pi }{3} \right)}{2} \\
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)+\cos \left( -\dfrac{\pi }{3} \right)}{2} \\
\end{align}$
We know that $\cos \left( -\theta \right)=\cos \theta $, the above equation can be written as
$\begin{align}
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)+\cos \left( \dfrac{\pi }{3} \right)}{2} \\
& \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}+\dfrac{1}{4}\to \left( 3 \right) \\
\end{align}$
Using equation-2, we can write ${{\sin }^{2}}x$and ${{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)$ as
$\begin{align}
& {{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} \\
& {{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)=\dfrac{1-\cos 2\left( x+\dfrac{\pi }{3} \right)}{2} \\
\end{align}$
Using these relations, f(x) becomes
$\begin{align}
& f\left( x \right)=\dfrac{1-\cos 2x}{2}+\dfrac{1-\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}+\dfrac{1}{4} \\
& f\left( x \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\left( \dfrac{\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2} \right) \\
\end{align}$
We know that $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Let us consider $\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)$, we get
\[\begin{align}
& \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=2\cos \left( \dfrac{2x+2x+\dfrac{2\pi }{3}}{2} \right)\cos \left( \dfrac{2x-2x-\dfrac{2\pi }{3}}{2} \right) \\
& \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=2\cos \left( 2x+\dfrac{\pi }{3} \right)\cos \left( \dfrac{\pi }{3} \right)=2\cos \left( 2x+\dfrac{\pi }{3} \right)\times \dfrac{1}{2}=\cos \left( 2x+\dfrac{\pi }{3} \right) \\
& \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=\cos \left( 2x+\dfrac{\pi }{3} \right) \\
\end{align}\]
Using this result in f(x), we get
$\begin{align}
& f\left( x \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\left( \dfrac{\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2} \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}=\dfrac{5}{4} \\
& f\left( x \right)=\dfrac{5}{4} \\
\end{align}$
We can infer that the function f(x) is a constant function.
In the question it is given that g(x) is a one-one function which means that for a given value of x, there is only one functional value corresponding to the function g(x).
In the question, we are asked about the nature of $gof(x)$, which means that we are asked about $g\left( f\left( x \right) \right)$.
We know that $f\left( x \right)=\dfrac{5}{4}$, we can write $g\left( f\left( x \right) \right)$ as
$g\left( f\left( x \right) \right)=g\left( \dfrac{5}{4} \right)$.
As g(x) is a one-one function, for the value of $\dfrac{5}{4}$, we get a unique functional value which is also a constant. So, we can infer that $g\left( f\left( x \right) \right)$ is a constant function.
$\therefore $ $g\left( f\left( x \right) \right)$ is a constant function.
So, the correct answer is “Option C”.
Note: Students can make a mistake by thinking that gof(x) is also a one-one function because the function g(x) is a one-one function without doing any calculation. The value of gof(x) also depends on the nature of f(x) and not just g(x). This question is an example of this scenario in which f(x) became a constant function and the function gof(x) became a constant function.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

