   Question Answers

# If the function $f\left( x \right)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ and $g\left( x \right)$ is a one-one function defined in $R\to R$, then $\left( gof \right)\left( x \right)$ is a A. One-oneB. OntoC. Constant functionD. Periodic with fundamental period $\pi$  Hint: To solve this problem, we should know the formulae related to the trigonometric ratios. We know that for the given angles A and B, $\cos A\cos B=\dfrac{\cos \left( A+B \right)+\cos \left( A-B \right)}{2}$ and ${{\sin }^{2}}A=\dfrac{1-\cos 2A}{2}$. Using these two formulae, we rewrite the function $f\left( x \right)$ and we get a relation that $f\left( x \right)=c$ which is a constant function. We can infer from this that $\left( gof \right)\left( x \right)$ is a constant function because $g\left( x \right)$ is a one-one function.

Let us consider $f\left( x \right)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ which is given in the question. We know the formulae
We know that for the given angles A and B,
$\cos A\cos B=\dfrac{\cos \left( A+B \right)+\cos \left( A-B \right)}{2}\to \left( 1 \right)$
${{\sin }^{2}}A=\dfrac{1-\cos 2A}{2}\to \left( 2 \right)$.
Using equation-1 , we can write $\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ as
A = $x$, B = $x+\dfrac{\pi }{3}$
\begin{align} & \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( x+x+\dfrac{\pi }{3} \right)+\cos \left( x-x-\dfrac{\pi }{3} \right)}{2} \\ & \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)+\cos \left( -\dfrac{\pi }{3} \right)}{2} \\ \end{align}
We know that $\cos \left( -\theta \right)=\cos \theta$, the above equation can be written as
\begin{align} & \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)+\cos \left( \dfrac{\pi }{3} \right)}{2} \\ & \cos x\cos \left( x+\dfrac{\pi }{3} \right)=\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}+\dfrac{1}{4}\to \left( 3 \right) \\ \end{align}
Using equation-2, we can write ${{\sin }^{2}}x$and ${{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)$ as
\begin{align} & {{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} \\ & {{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)=\dfrac{1-\cos 2\left( x+\dfrac{\pi }{3} \right)}{2} \\ \end{align}
Using these relations, f(x) becomes
\begin{align} & f\left( x \right)=\dfrac{1-\cos 2x}{2}+\dfrac{1-\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}+\dfrac{1}{4} \\ & f\left( x \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\left( \dfrac{\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2} \right) \\ \end{align}
We know that $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Let us consider $\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)$, we get
\begin{align} & \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=2\cos \left( \dfrac{2x+2x+\dfrac{2\pi }{3}}{2} \right)\cos \left( \dfrac{2x-2x-\dfrac{2\pi }{3}}{2} \right) \\ & \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=2\cos \left( 2x+\dfrac{\pi }{3} \right)\cos \left( \dfrac{\pi }{3} \right)=2\cos \left( 2x+\dfrac{\pi }{3} \right)\times \dfrac{1}{2}=\cos \left( 2x+\dfrac{\pi }{3} \right) \\ & \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)=\cos \left( 2x+\dfrac{\pi }{3} \right) \\ \end{align}
Using this result in f(x), we get
\begin{align} & f\left( x \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\left( \dfrac{\cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2} \right)=\dfrac{5}{4}+\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}-\dfrac{\cos \left( 2x+\dfrac{\pi }{3} \right)}{2}=\dfrac{5}{4} \\ & f\left( x \right)=\dfrac{5}{4} \\ \end{align}
We can infer that the function f(x) is a constant function.
In the question it is given that g(x) is a one-one function which means that for a given value of x, there is only one functional value corresponding to the function g(x).
In the question, we are asked about the nature of $gof(x)$, which means that we are asked about $g\left( f\left( x \right) \right)$.
We know that $f\left( x \right)=\dfrac{5}{4}$, we can write $g\left( f\left( x \right) \right)$ as
$g\left( f\left( x \right) \right)=g\left( \dfrac{5}{4} \right)$.
As g(x) is a one-one function, for the value of $\dfrac{5}{4}$, we get a unique functional value which is also a constant. So, we can infer that $g\left( f\left( x \right) \right)$ is a constant function.
$\therefore$ $g\left( f\left( x \right) \right)$ is a constant function.

So, the correct answer is “Option C”.

Note: Students can make a mistake by thinking that gof(x) is also a one-one function because the function g(x) is a one-one function without doing any calculation. The value of gof(x) also depends on the nature of f(x) and not just g(x). This question is an example of this scenario in which f(x) became a constant function and the function gof(x) became a constant function.
View Notes
One to One Function  Analytic Function  Electromagnetic Spectrum X-rays  Kidney Function Test  What Happens if the Earth Stops Rotating?  Sin 120  Value of Sin 180  CBSE Class 12 Maths Formulas  CBSE Class 8 Maths Chapter 2 - Linear Equations in One Variable Formulas  Sin Cos Formula  Important Questions for CBSE Class 8 Maths Chapter 2 - Linear Equations in One Variable  Important Questions for CBSE Class 12 Maths Chapter 12 - Linear Programming  Important Questions for CBSE Class 12 Chemistry Chapter 1 - The Solid State  Important Questions for CBSE Class 12 Chemistry Chapter 7 - The p-Block Elements  Important Questions for CBSE Class 12 Maths Chapter 7 - Integrals  Important Questions for CBSE Class 12 Maths Chapter 13 - Probability  Important Questions for CBSE Class 12 Chemistry Chapter 8 - The d and f Block Elements  Important Questions for CBSE Class 12 Macro Economics Chapter 5 - Government Budget and the Economy  Important Questions for CBSE Class 12 Maths Chapter 4 - Determinants  Important Questions for CBSE Class 12 Maths Chapter 3 - Matrices  CBSE Class 12 Maths Question Paper 2020  Maths Question Paper for CBSE Class 12 - 2013  Previous Year Question Paper for CBSE Class 12 Maths - 2014  CBSE Previous Year Question Papers Class 12 Maths with Solutions  Maths Question Paper for CBSE Class 12 - 2016 Set 1 C  Maths Question Paper for CBSE Class 12 - 2016 Set 1 E  Maths Question Paper for CBSE Class 12 - 2016 Set 1 S  CBSE Class 12 Maths Question Paper 2018 with Solutions - Free PDF  CBSE Class 12 Maths Question Paper 2015 with Solutions - Free PDF  Maths Question Paper for CBSE Class 12 - 2016 Set 1 N  CBSE Class 8 Maths Chapter 2 Linear Equation in One Variable Exercise 2.5  NCERT Solutions for Class 12 English Kaliedoscope Short Stories Chapter 5 - One Centimeter  RD Sharma Class 12 Maths Solutions Chapter 29 - The Plane  RD Sharma Class 8 Maths Solutions Chapter 9 - Linear Equations in One Variable  RD Sharma Class 7 Maths Solutions Chapter 8 - Linear Equations in One Variable  Textbooks Solutions for CBSE & ICSE Board of Class 6 to 12 Maths & Science  NCERT Exemplar for Class 8 Maths Solutions Chapter 4 Linear Equation In One Variable  NCERT Solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable  RS Aggarwal Class 12 Solutions Chapter-28 The Plane  NCERT Solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable (EX 2.2) Exercise 2.2  