
If the atom \[_{100}F{m^{257}}\] follows the Bohr model and the radius of \[_{100}F{m^{257}}\] is $n$ times the Bohr radius, then find $n$ .
A. \[100\]
B. \[200\]
C. \[4\]
D. $\dfrac{1}{4}$
Answer
219k+ views
Hint:In the Bohr atomic model, electrons circle the nucleus in well-defined circular orbits. The quantum number $n$ , an integer, is used to identify the orbits. To find the required value of $n$ we will write the radius of \[_{100}F{m^{257}}\] in terms of Bohr radius and equate with the given value of radius of \[_{100}F{m^{257}}\] .
Formula Used:
Radius of an atom,
$r = \dfrac{{{m^2}{r_o}}}{Z}$
Complete step by step solution:
Given: $r = n{r_o}$...........(1)
Where $r$ is the radius of an atom (here, that of $Fm$ ) and ${r_o}$ is the Bohr radius. The synthetic element fermium has an atomic number of \[100\] and has the symbol $Fm$. Although pure fermium metal has not yet been created, it is an actinide and the heaviest element that can be created by neutron bombardment of lighter elements. As a result, it is the last element that can be synthesised in macroscopic amounts. We know that, radius of an atom can be written as,
$r = \dfrac{{{m^2}{r_o}}}{Z}$...........(2)
Now, electronic configuration of \[_{100}F{m^{257}}\] is \[2,{\text{ }}8,{\text{ }}18,{\text{ }}32,{\text{ }}50\] , that is, there are five number of orbits in \[_{100}F{m^{257}}\] . This implies that $m = 5$.
Putting the known values in equation (2), we get,
$r = \dfrac{{{5^2}{r_o}}}{{100}}$
Solving this we get,
$r = \dfrac{1}{4}{r_o}$
Comparing equation (1) and equation (2), we get,
$\therefore n = \dfrac{1}{4}$
Hence, option D is the answer.
Note: The Bohr model, often known as a planetary model, states that the electrons orbit the atom's nucleus in fixed, permitted paths. The energy of the electrons is fixed when it is in one of these orbits.
Formula Used:
Radius of an atom,
$r = \dfrac{{{m^2}{r_o}}}{Z}$
Complete step by step solution:
Given: $r = n{r_o}$...........(1)
Where $r$ is the radius of an atom (here, that of $Fm$ ) and ${r_o}$ is the Bohr radius. The synthetic element fermium has an atomic number of \[100\] and has the symbol $Fm$. Although pure fermium metal has not yet been created, it is an actinide and the heaviest element that can be created by neutron bombardment of lighter elements. As a result, it is the last element that can be synthesised in macroscopic amounts. We know that, radius of an atom can be written as,
$r = \dfrac{{{m^2}{r_o}}}{Z}$...........(2)
Now, electronic configuration of \[_{100}F{m^{257}}\] is \[2,{\text{ }}8,{\text{ }}18,{\text{ }}32,{\text{ }}50\] , that is, there are five number of orbits in \[_{100}F{m^{257}}\] . This implies that $m = 5$.
Putting the known values in equation (2), we get,
$r = \dfrac{{{5^2}{r_o}}}{{100}}$
Solving this we get,
$r = \dfrac{1}{4}{r_o}$
Comparing equation (1) and equation (2), we get,
$\therefore n = \dfrac{1}{4}$
Hence, option D is the answer.
Note: The Bohr model, often known as a planetary model, states that the electrons orbit the atom's nucleus in fixed, permitted paths. The energy of the electrons is fixed when it is in one of these orbits.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

