
If \[\tan\alpha = \dfrac{m}{{\left( {m + 1} \right)}}\] and \[\tan\beta = \dfrac{1}{{\left( {2m + 1} \right)}}\]. Then find the value of \[\left( {\alpha + \beta } \right)\].
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{4}\]
C. 0
D. \[\dfrac{\pi }{2}\]
Answer
232.8k+ views
Hint: In the given question, two trigonometric equations of \[\tan\] are given. By substituting the given equations in the tangent addition formula, we will find the value of \[\tan \left( {\alpha + \beta } \right)\]. Then using the value of trigonometric angles, we will find the value of \[\left( {\alpha + \beta } \right)\].
Formula Used:
tangent addition formula: \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\ tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Complete step by step solution:
The given trigonometric equations are \[\tan\alpha = \dfrac{m}{{\left( {m + 1} \right)}}\] and \[\tan\beta = \dfrac{1}{{\left( {2m + 1} \right)}}\].
Let’s substitute the given equations in the tangent addition formula.
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan\alpha + \tan\beta }}{{1 - \tan\alpha\ tan\beta }}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{m}{{m + 1}} + \dfrac{1}{{2m + 1}}}}{{1 - \left( {\dfrac{m}{{m + 1}}} \right)\left( {\dfrac{1}{{2m + 1}}} \right)}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{m\left( {2m + 1} \right) + \left( {m + 1} \right)}}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}{{1 - \dfrac{m}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + m + m + 1}}{{\left( {m + 1} \right)\left( {2m + 1} \right) - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + m + 2m + 1 - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + 2m + 1}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = 1\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \tan \left( {\dfrac{\pi }{4}} \right)\] [Since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]]
\[ \Rightarrow \]\[\alpha + \beta = \dfrac{\pi }{4}\]
Hence the correct option is option B
Note: Students are often confused with the formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 + \tan A\tan B}}\] . But the correct tangent addition formula is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}\].
Formula Used:
tangent addition formula: \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\ tan B}}{{1 - \tan A\tan B}}\]
\[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]
Complete step by step solution:
The given trigonometric equations are \[\tan\alpha = \dfrac{m}{{\left( {m + 1} \right)}}\] and \[\tan\beta = \dfrac{1}{{\left( {2m + 1} \right)}}\].
Let’s substitute the given equations in the tangent addition formula.
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan\alpha + \tan\beta }}{{1 - \tan\alpha\ tan\beta }}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{m}{{m + 1}} + \dfrac{1}{{2m + 1}}}}{{1 - \left( {\dfrac{m}{{m + 1}}} \right)\left( {\dfrac{1}{{2m + 1}}} \right)}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{m\left( {2m + 1} \right) + \left( {m + 1} \right)}}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}{{1 - \dfrac{m}{{\left( {m + 1} \right)\left( {2m + 1} \right)}}}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + m + m + 1}}{{\left( {m + 1} \right)\left( {2m + 1} \right) - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + m + 2m + 1 - m}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \dfrac{{2{m^2} + 2m + 1}}{{2{m^2} + 2m + 1}}\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = 1\]
\[ \Rightarrow \]\[\tan \left( {\alpha + \beta } \right) = \tan \left( {\dfrac{\pi }{4}} \right)\] [Since \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\]]
\[ \Rightarrow \]\[\alpha + \beta = \dfrac{\pi }{4}\]
Hence the correct option is option B
Note: Students are often confused with the formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A +\tan B}}{{1 - \tan A\tan B}}\] and \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 + \tan A\tan B}}\] . But the correct tangent addition formula is \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A \tan B}}\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

