
If \[\tan n\theta = \tan m\theta \] , then find the different value of \[\theta \] will be in which progression.
A. A.P
B. G.P
C. H.P
D. None of these
Answer
233.1k+ views
Hints First obtain the general solution for the given equation, then substitute 1,2,3,… for n in the obtained general solution to observe the progression. Subtract the second term from the first term and then the third term from the second term to observe whether the difference is the same or not. If the difference is the same then the progression is in A.P.
Formula used
The general solution of \[\tan \theta = \tan \beta \] is \[\theta = n\pi + \beta ,n = 1,2,3,....\] .
Complete step by step solution
The given equation is \[\tan n\theta = \tan m\theta \].
Therefore, the general solution is,
\[n\theta = N\pi + m\theta \]
\[n\theta - m\theta = N\pi \]
\[\theta = \dfrac{{N\pi }}{{n - m}}\]
Now, substitute N=1,2,3,… for evaluation.
The sequence will be \[\left\{ {\dfrac{\pi }{{n - m}},\dfrac{{2\pi }}{{n - m}},\dfrac{{3\pi }}{{n - m}},...} \right\}\] .
Therefore, the common difference of second term and first term is \[\dfrac{{2\pi }}{{n - m}} - \dfrac{\pi }{{n - m}} = \dfrac{\pi }{{n - m}}\]
And third term and second term is \[\dfrac{{3\pi }}{{n - m}} - \dfrac{{2\pi }}{{n - m}} = \dfrac{\pi }{{n - m}}\], hence the sequence is in A.P.
The correct option is A.
Note Sometimes students write the general solution as \[n\theta = m\theta \] , hence they get \[\theta = 0\] as the answer but this is not correct. Use the general formula for \[\tan \theta = \tan \beta \] as \[\theta = n\pi + \beta ,n = 1,2,3,....\] and calculate to obtain the required answer.
Formula used
The general solution of \[\tan \theta = \tan \beta \] is \[\theta = n\pi + \beta ,n = 1,2,3,....\] .
Complete step by step solution
The given equation is \[\tan n\theta = \tan m\theta \].
Therefore, the general solution is,
\[n\theta = N\pi + m\theta \]
\[n\theta - m\theta = N\pi \]
\[\theta = \dfrac{{N\pi }}{{n - m}}\]
Now, substitute N=1,2,3,… for evaluation.
The sequence will be \[\left\{ {\dfrac{\pi }{{n - m}},\dfrac{{2\pi }}{{n - m}},\dfrac{{3\pi }}{{n - m}},...} \right\}\] .
Therefore, the common difference of second term and first term is \[\dfrac{{2\pi }}{{n - m}} - \dfrac{\pi }{{n - m}} = \dfrac{\pi }{{n - m}}\]
And third term and second term is \[\dfrac{{3\pi }}{{n - m}} - \dfrac{{2\pi }}{{n - m}} = \dfrac{\pi }{{n - m}}\], hence the sequence is in A.P.
The correct option is A.
Note Sometimes students write the general solution as \[n\theta = m\theta \] , hence they get \[\theta = 0\] as the answer but this is not correct. Use the general formula for \[\tan \theta = \tan \beta \] as \[\theta = n\pi + \beta ,n = 1,2,3,....\] and calculate to obtain the required answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

