
If ${t_1}$ and ${t_2}$ are two extremities of any focal chord of the parabola ${y^2} = 4ax$ then${t_1}{t_2}= $
A. $ - 1$
B. $0$
C. $ \pm 1$
D. $\dfrac{1}{2}$
Answer
218.4k+ views
Hint: In order to solve the problem just find the slopes with the help of coordinates. Then equate both the slopes and get a relation.
Coordinates of end point of focal chord are $\left( {at_1^2,2a{t_1}} \right),\left( {at_2^2,2a{t_2}}
\right)$and the focus is$\left( {a,0} \right)$
Three points are collinear, so slopes will be same,
$
\Rightarrow \dfrac{{2a{t_2} - 2a{t_1}}}{{at_2^2 - at_1^2}} = \dfrac{{2a{t_2} - 0}}{{at_2^2 - a}} \\
\Rightarrow \dfrac{{{t_2} - {t_1}}}{{t_2^2 - t_1^2}} = \dfrac{{{t_2}}}{{t_2^2 - 1}} \\
\Rightarrow \dfrac{{{t_2} - {t_1}}}{{\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}} =
\dfrac{{{t_2}}}{{t_2^2 - 1}} \\
\Rightarrow \dfrac{1}{{\left( {{t_2} + {t_1}} \right)}} = \dfrac{{{t_2}}}{{t_2^2 - 1}} \\
\Rightarrow t_2^2 - 1 = {t_2}\left( {{t_2} + {t_1}} \right) = {t_1}{t_2} + t_2^2 \\
\Rightarrow {t_1}{t_2} = - 1 \\
$
Hence option A is the correct option.
Note:In such a question where indirectly something is asked from the question, do not try to find all the points, rather try to manipulate the equation with the help of slopes. Like in this problem the 3 points lie on the same line hence collinearity condition could be used.
Coordinates of end point of focal chord are $\left( {at_1^2,2a{t_1}} \right),\left( {at_2^2,2a{t_2}}
\right)$and the focus is$\left( {a,0} \right)$
Three points are collinear, so slopes will be same,
$
\Rightarrow \dfrac{{2a{t_2} - 2a{t_1}}}{{at_2^2 - at_1^2}} = \dfrac{{2a{t_2} - 0}}{{at_2^2 - a}} \\
\Rightarrow \dfrac{{{t_2} - {t_1}}}{{t_2^2 - t_1^2}} = \dfrac{{{t_2}}}{{t_2^2 - 1}} \\
\Rightarrow \dfrac{{{t_2} - {t_1}}}{{\left( {{t_2} - {t_1}} \right)\left( {{t_2} + {t_1}} \right)}} =
\dfrac{{{t_2}}}{{t_2^2 - 1}} \\
\Rightarrow \dfrac{1}{{\left( {{t_2} + {t_1}} \right)}} = \dfrac{{{t_2}}}{{t_2^2 - 1}} \\
\Rightarrow t_2^2 - 1 = {t_2}\left( {{t_2} + {t_1}} \right) = {t_1}{t_2} + t_2^2 \\
\Rightarrow {t_1}{t_2} = - 1 \\
$
Hence option A is the correct option.
Note:In such a question where indirectly something is asked from the question, do not try to find all the points, rather try to manipulate the equation with the help of slopes. Like in this problem the 3 points lie on the same line hence collinearity condition could be used.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

