
If \[\sin y + {e^{ - x\cos y}} = e\]. Then what is the value of \[\dfrac{{dy}}{{dx}}\] at \[\left( {1,\pi } \right)\]?
A. \[e\]
B. \[\sin y\]
C. \[\cos y\]
D. \[\sin y \cos y\]
Answer
232.8k+ views
Hint In the given question, one trigonometric equation is given. We will differentiate the given equations with respect to \[x\]. Then simplify the differential equation. By substituting \[x = 1\] and \[y = \pi \] in the differential equation, we will get the value of \[\dfrac{{dy}}{{dx}}\] at \[\left( {1,\pi } \right)\].
Formula used
\[\dfrac{d}{{dx}}\left( {\sin y} \right) = \cos y\dfrac{{dy}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {\cos y} \right) = - \sin y\dfrac{{dy}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( c \right) = 0\], where \[c\] is a constant.
Product rule formula: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given trigonometric equation is \[\sin y + {e^{ - x\cos y}} = e\].
Let’s differentiate the given equation with respect to \[x\].
\[\dfrac{d}{{dx}}\sin y + \dfrac{d}{{dx}}{e^{ - x\cos y}} = \dfrac{d}{{dx}}e\]
\[ \Rightarrow \]\[\cos y\dfrac{{dy}}{{dx}} + {e^{ - x\cos y}}\dfrac{d}{{dx}}\left( { - x\cos y} \right) = 0\]
Apply product rule formula for the exponential term.
\[\cos y\dfrac{{dy}}{{dx}} + {e^{ - x\cos y}}\left( { - \cos y + x\sin y\dfrac{{dy}}{{dx}}} \right) = 0\] [Since \[e\] is a constant. So, \[\dfrac{d}{{dx}}\left( e \right) = 0\]]
Simplify the above equation.
\[\left( {\cos y + {e^{ - x\cos y}}x\sin y} \right)\dfrac{{dy}}{{dx}} - {e^{ - x\cos y}}\cos y = 0\]
\[ \Rightarrow \]\[\left( {\cos y + {e^{ - x\cos y}}x\sin y} \right)\dfrac{{dy}}{{dx}} = {e^{ - x\cos y}}\cos y\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{{e^{ - x\cos y}}\cos y}}{{\left( {\cos y + {e^{ - x\cos y}}x\sin y} \right)}}\]
Now substitute \[x = 1\] and \[y = \pi \] in the above equation.
\[\dfrac{{dy}}{{dx}} = \dfrac{{{e^{ - \left( 1 \right)\cos\left( \pi \right)}}\cos\left( \pi \right)}}{{\left( {\cos\left( \pi \right) + {e^{ - \left( 1 \right)\cos\left( \pi \right)}}\left( 1 \right)\sin\left( \pi \right)} \right)}}\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{{e^{ - \left( 1 \right)\left( { - 1} \right)}}\left( { - 1} \right)}}{{\left( {\left( { - 1} \right) + {e^{ - \left( 1 \right)\left( { - 1} \right)}}\left( 1 \right)\left( 0 \right)} \right)}}\] [Since \[\cos\pi = - 1\] and \[\sin\pi = 0\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{ - e}}{{ - 1}}\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = e\]
Hence the correct option is A.
Note: Students are often confused with the formulas of \[\dfrac{d}{{dx}}\left( {\sin y} \right)\] and \[\dfrac{d}{{dx}}\left( {\cos y} \right)\]. Here \[y\] is another variable, so we have to also calculate the derivative of the variable \[y\]. The derivative of \[\dfrac{d}{{dx}}\left( {\sin y} \right)\] is \[\cos y\dfrac{{dy}}{{dx}}\] and \[\dfrac{d}{{dx}}\left( {\cos y} \right)\] is \[ - \sin y\dfrac{{dy}}{{dx}}\].
Formula used
\[\dfrac{d}{{dx}}\left( {\sin y} \right) = \cos y\dfrac{{dy}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {\cos y} \right) = - \sin y\dfrac{{dy}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( c \right) = 0\], where \[c\] is a constant.
Product rule formula: \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
Complete step by step solution:
The given trigonometric equation is \[\sin y + {e^{ - x\cos y}} = e\].
Let’s differentiate the given equation with respect to \[x\].
\[\dfrac{d}{{dx}}\sin y + \dfrac{d}{{dx}}{e^{ - x\cos y}} = \dfrac{d}{{dx}}e\]
\[ \Rightarrow \]\[\cos y\dfrac{{dy}}{{dx}} + {e^{ - x\cos y}}\dfrac{d}{{dx}}\left( { - x\cos y} \right) = 0\]
Apply product rule formula for the exponential term.
\[\cos y\dfrac{{dy}}{{dx}} + {e^{ - x\cos y}}\left( { - \cos y + x\sin y\dfrac{{dy}}{{dx}}} \right) = 0\] [Since \[e\] is a constant. So, \[\dfrac{d}{{dx}}\left( e \right) = 0\]]
Simplify the above equation.
\[\left( {\cos y + {e^{ - x\cos y}}x\sin y} \right)\dfrac{{dy}}{{dx}} - {e^{ - x\cos y}}\cos y = 0\]
\[ \Rightarrow \]\[\left( {\cos y + {e^{ - x\cos y}}x\sin y} \right)\dfrac{{dy}}{{dx}} = {e^{ - x\cos y}}\cos y\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{{e^{ - x\cos y}}\cos y}}{{\left( {\cos y + {e^{ - x\cos y}}x\sin y} \right)}}\]
Now substitute \[x = 1\] and \[y = \pi \] in the above equation.
\[\dfrac{{dy}}{{dx}} = \dfrac{{{e^{ - \left( 1 \right)\cos\left( \pi \right)}}\cos\left( \pi \right)}}{{\left( {\cos\left( \pi \right) + {e^{ - \left( 1 \right)\cos\left( \pi \right)}}\left( 1 \right)\sin\left( \pi \right)} \right)}}\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{{e^{ - \left( 1 \right)\left( { - 1} \right)}}\left( { - 1} \right)}}{{\left( {\left( { - 1} \right) + {e^{ - \left( 1 \right)\left( { - 1} \right)}}\left( 1 \right)\left( 0 \right)} \right)}}\] [Since \[\cos\pi = - 1\] and \[\sin\pi = 0\]]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = \dfrac{{ - e}}{{ - 1}}\]
\[ \Rightarrow \]\[\dfrac{{dy}}{{dx}} = e\]
Hence the correct option is A.
Note: Students are often confused with the formulas of \[\dfrac{d}{{dx}}\left( {\sin y} \right)\] and \[\dfrac{d}{{dx}}\left( {\cos y} \right)\]. Here \[y\] is another variable, so we have to also calculate the derivative of the variable \[y\]. The derivative of \[\dfrac{d}{{dx}}\left( {\sin y} \right)\] is \[\cos y\dfrac{{dy}}{{dx}}\] and \[\dfrac{d}{{dx}}\left( {\cos y} \right)\] is \[ - \sin y\dfrac{{dy}}{{dx}}\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

