
If \[\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right)\], then find the value of \[x\].
Answer
533.1k+ views
Hint: In this question, we will proceed by converting \[{\cot ^{ - 1}}\] in terms of \[{\sin ^{ - 1}}\] and \[{\tan ^{ - 1}}\] in terms of \[{\cos ^{ - 1}}\] by using the formula \[{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }}\] and \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\]. So, use this concept to reach the solution of the problem.
Complete step by step answer:
Given that \[\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right)\]
By using the formula \[{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }}\] and \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\]
\[ \Rightarrow \sin \left[ {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right] = \cos \left[ {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]\]
We know that, \[\sin \left( {{{\sin }^{ - 1}}A} \right) = A\] and \[\cos \left( {{{\cos }^{ - 1}}A} \right) = A\]
\[
\Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }} \\
\Rightarrow \sqrt {1 + {x^2}} = \sqrt {1 + {{\left( {1 + x} \right)}^2}} \\
\]
Squaring on both sides, we have
\[
\Rightarrow 1 + {x^2} = 1 + {\left( {1 + x} \right)^2} \\
\Rightarrow 1 + {x^2} = 1 + 1 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} = 2 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} - 2 - {x^2} = 2x \\
\Rightarrow - 1 = 2x \\
\therefore x = - \dfrac{1}{2} \\
\]
Thus, the value of \[x\] is \[ - \dfrac{1}{2}\]
Note: To solve these kinds of questions, students must be familiar with all the formulae in trigonometry and inverse trigonometry. If we didn’t remember the formulae we can draw the corresponding right angle triangle then we convert the terms of \[{\cot ^{ - 1}}\] and \[{\tan ^{ - 1}}\] in terms of \[{\sin ^{ - 1}}\] and \[{\cos ^{ - 1}}\] respectively. But it consumes a lot of time. So, do remember the formulae in order to solve them easily.
Complete step by step answer:
Given that \[\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right)\]
By using the formula \[{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }}\] and \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\]
\[ \Rightarrow \sin \left[ {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right] = \cos \left[ {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]\]
We know that, \[\sin \left( {{{\sin }^{ - 1}}A} \right) = A\] and \[\cos \left( {{{\cos }^{ - 1}}A} \right) = A\]
\[
\Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }} \\
\Rightarrow \sqrt {1 + {x^2}} = \sqrt {1 + {{\left( {1 + x} \right)}^2}} \\
\]
Squaring on both sides, we have
\[
\Rightarrow 1 + {x^2} = 1 + {\left( {1 + x} \right)^2} \\
\Rightarrow 1 + {x^2} = 1 + 1 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} = 2 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} - 2 - {x^2} = 2x \\
\Rightarrow - 1 = 2x \\
\therefore x = - \dfrac{1}{2} \\
\]
Thus, the value of \[x\] is \[ - \dfrac{1}{2}\]
Note: To solve these kinds of questions, students must be familiar with all the formulae in trigonometry and inverse trigonometry. If we didn’t remember the formulae we can draw the corresponding right angle triangle then we convert the terms of \[{\cot ^{ - 1}}\] and \[{\tan ^{ - 1}}\] in terms of \[{\sin ^{ - 1}}\] and \[{\cos ^{ - 1}}\] respectively. But it consumes a lot of time. So, do remember the formulae in order to solve them easily.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
