
If \[\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right)\], then find the value of \[x\].
Answer
593.7k+ views
Hint: In this question, we will proceed by converting \[{\cot ^{ - 1}}\] in terms of \[{\sin ^{ - 1}}\] and \[{\tan ^{ - 1}}\] in terms of \[{\cos ^{ - 1}}\] by using the formula \[{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }}\] and \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\]. So, use this concept to reach the solution of the problem.
Complete step by step answer:
Given that \[\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right)\]
By using the formula \[{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }}\] and \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\]
\[ \Rightarrow \sin \left[ {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right] = \cos \left[ {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]\]
We know that, \[\sin \left( {{{\sin }^{ - 1}}A} \right) = A\] and \[\cos \left( {{{\cos }^{ - 1}}A} \right) = A\]
\[
\Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }} \\
\Rightarrow \sqrt {1 + {x^2}} = \sqrt {1 + {{\left( {1 + x} \right)}^2}} \\
\]
Squaring on both sides, we have
\[
\Rightarrow 1 + {x^2} = 1 + {\left( {1 + x} \right)^2} \\
\Rightarrow 1 + {x^2} = 1 + 1 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} = 2 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} - 2 - {x^2} = 2x \\
\Rightarrow - 1 = 2x \\
\therefore x = - \dfrac{1}{2} \\
\]
Thus, the value of \[x\] is \[ - \dfrac{1}{2}\]
Note: To solve these kinds of questions, students must be familiar with all the formulae in trigonometry and inverse trigonometry. If we didn’t remember the formulae we can draw the corresponding right angle triangle then we convert the terms of \[{\cot ^{ - 1}}\] and \[{\tan ^{ - 1}}\] in terms of \[{\sin ^{ - 1}}\] and \[{\cos ^{ - 1}}\] respectively. But it consumes a lot of time. So, do remember the formulae in order to solve them easily.
Complete step by step answer:
Given that \[\sin \left[ {{{\cot }^{ - 1}}\left( {x + 1} \right)} \right] = \cos \left( {{{\tan }^{ - 1}}x} \right)\]
By using the formula \[{\cot ^{ - 1}}\left( {x + 1} \right) = {\sin ^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {x + 1} \right)}^2}} }}\] and \[{\tan ^{ - 1}}x = {\cos ^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}\]
\[ \Rightarrow \sin \left[ {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right] = \cos \left[ {{{\cos }^{ - 1}}\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]\]
We know that, \[\sin \left( {{{\sin }^{ - 1}}A} \right) = A\] and \[\cos \left( {{{\cos }^{ - 1}}A} \right) = A\]
\[
\Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }} \\
\Rightarrow \sqrt {1 + {x^2}} = \sqrt {1 + {{\left( {1 + x} \right)}^2}} \\
\]
Squaring on both sides, we have
\[
\Rightarrow 1 + {x^2} = 1 + {\left( {1 + x} \right)^2} \\
\Rightarrow 1 + {x^2} = 1 + 1 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} = 2 + 2x + {x^2} \\
\Rightarrow 1 + {x^2} - 2 - {x^2} = 2x \\
\Rightarrow - 1 = 2x \\
\therefore x = - \dfrac{1}{2} \\
\]
Thus, the value of \[x\] is \[ - \dfrac{1}{2}\]
Note: To solve these kinds of questions, students must be familiar with all the formulae in trigonometry and inverse trigonometry. If we didn’t remember the formulae we can draw the corresponding right angle triangle then we convert the terms of \[{\cot ^{ - 1}}\] and \[{\tan ^{ - 1}}\] in terms of \[{\sin ^{ - 1}}\] and \[{\cos ^{ - 1}}\] respectively. But it consumes a lot of time. So, do remember the formulae in order to solve them easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

