
If \[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k,\] \[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k,\] \[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k,\] $P\left( {A \cap B \cap C} \right) = {k^2},$ $k \in \left( {0,1} \right)$. Then, find the value of $P$ $($at least one of $A,B,C)$ is:
(A) $ > \;\dfrac{1}{2}$
(B) $\left[ {\dfrac{1}{8},\dfrac{1}{4}} \right]$
(C) \[ < \;\dfrac{1}{4}\]
(D) $\dfrac{1}{4}$
Answer
232.8k+ views
Hint: In order to solve this question, we will first simplify all three given equations using the suitable identity. Next, we will add all the equations obtained by solving the given three equations. Further, we will substitute them in another identity and simplify it to get the desired correct answer.
Complete step by step Solution:
We are given that,
\[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k\] ………………..equation $\left( 1 \right)$
\[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k\] ………………..equation $(2)$
\[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k\] ………………..equation $(3)$
We know that,
$P\left( {\overline X \cap Y} \right) = P\left( Y \right) - P\left( {X \cap Y} \right)$ ………………..equation $(4)$
Solving equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ using equation $(4)$ we get,
$P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right)$ ………………..equation $\left( 5 \right)$
$P\left( A \right) + P\left( C \right) - 2P\left( {A \cap C} \right)$ ………………..equation $\left( 6 \right)$
$P\left( B \right) + P\left( C \right) - 2P\left( {B \cap C} \right)$ ………………..equation $\left( 7 \right)$
Adding equations $\left( 5 \right),\left( 6 \right),\left( 7 \right)$ we get,
$P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2}$ ………………..equation $\left( 8 \right)$
We know that,
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)\]
Substituting equation $\left( 8 \right)$ in the above equation,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2} + {k^2}$
Solving it,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k + 2{k^2}} \right)}}{2}$
Since, the value of $2{k^2} - 4k + 3$ is greater than $1$ so,
$P\left( {A \cup B \cup C} \right) > \;\dfrac{1}{2}$
Hence, the correct option is A.
Note: Make sure you use a suitable identity. Also, after solving the given equations, in order to avoid getting a wrong answer, check wisely and attentively whether you need to add all the equations or some other simplification is required depending upon the need of the question.
Complete step by step Solution:
We are given that,
\[P\left( {\overline A \cap B} \right) + P\left( {A \cap \overline B } \right) = 1 - k\] ………………..equation $\left( 1 \right)$
\[P\left( {\overline A \cap C} \right) + P\left( {A \cap \overline C } \right) = 1 - 2k\] ………………..equation $(2)$
\[P\left( {\overline B \cap C} \right) + P\left( {B \cap \overline C } \right) = 1 - k\] ………………..equation $(3)$
We know that,
$P\left( {\overline X \cap Y} \right) = P\left( Y \right) - P\left( {X \cap Y} \right)$ ………………..equation $(4)$
Solving equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ using equation $(4)$ we get,
$P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right)$ ………………..equation $\left( 5 \right)$
$P\left( A \right) + P\left( C \right) - 2P\left( {A \cap C} \right)$ ………………..equation $\left( 6 \right)$
$P\left( B \right) + P\left( C \right) - 2P\left( {B \cap C} \right)$ ………………..equation $\left( 7 \right)$
Adding equations $\left( 5 \right),\left( 6 \right),\left( 7 \right)$ we get,
$P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2}$ ………………..equation $\left( 8 \right)$
We know that,
\[P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) - P\left( {A \cap B} \right) - P\left( {A \cap C} \right) - P\left( {B \cap C} \right) + P\left( {A \cap B \cap C} \right)\]
Substituting equation $\left( 8 \right)$ in the above equation,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k} \right)}}{2} + {k^2}$
Solving it,
$P\left( {A \cup B \cup C} \right) = \dfrac{{\left( {3 - 4k + 2{k^2}} \right)}}{2}$
Since, the value of $2{k^2} - 4k + 3$ is greater than $1$ so,
$P\left( {A \cup B \cup C} \right) > \;\dfrac{1}{2}$
Hence, the correct option is A.
Note: Make sure you use a suitable identity. Also, after solving the given equations, in order to avoid getting a wrong answer, check wisely and attentively whether you need to add all the equations or some other simplification is required depending upon the need of the question.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

