
If \[m\tan \left( {\theta - 30} \right) = n\tan \left( {\theta + 120} \right)\] , then \[\dfrac{{m + n}}{{m - n}}\] is
A. \[2\cos 2\theta \]
B. \[\cos 2\theta \]
C. \[2\sin 2\theta \]
D. \[\sin 2\theta \]
Answer
232.8k+ views
Hint: In this question, we have to find the value of \[\dfrac{{m + n}}{{m - n}}\]. Firstly, we will rearrange the terms by taking variables on one side and trigonometric functions on another side. Then, apply the componendo and dividendo rule and simplify the expression and further use the trigonometric value of a particular angle to find the value of \[\dfrac{{m + n}}{{m - n}}\].
Formula used: The formula used in this question is shown below;
1. Componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\]
2. \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
3. \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\]
4. \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\]
5. \[\sin \left( {180 - x} \right) = \sin x\]
6. \[\sin \left( {\theta + 90} \right) = \cos \theta \]
Complete step-by-step solution:
We are given that
\[m\tan \left( {\theta - 30} \right) = n\tan \left( {\theta + 120} \right)\]
Firstly, we will rearrange the given equation by taking variables on left-hand side and trigonometric function on right-hand side, we get
\[\dfrac{m}{n} = \dfrac{{\tan \left( {\theta + 120} \right)}}{{\tan \left( {\theta - 30} \right)}}\]
Let us assume \[\theta + 120 = A\] and \[\theta - 30 = B\].
Now, substitute this in the above equation, we get
\[\dfrac{m}{n} = \dfrac{{\tan A}}{{\tan B}}\] ……(1)
Further, we will apply the componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\].
Here, \[a\] is \[m,b\] is \[n,c\] is \[\tan A\] and \[d\] is \[\tan B\] and substitute the values in equation (1), we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\tan A + \tan B}}{{\tan A - \tan B}}\]
Furthermore, we will apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]in the above equation where \[\theta \] is \[A\] and \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A}}{{\cos A}} + \dfrac{{\sin B}}{{\cos B}}}}{{\dfrac{{\sin A}}{{\cos A}} - \dfrac{{\sin B}}{{\cos B}}}}\]
Now, we will simplify the above expression by taking LCM, we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}}}}{{\dfrac{{\sin A\cos B - \sin A\sin B}}{{\cos A\cos B}}}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin A\cos B + \cos A\sin B}}{{\sin A\cos B - \sin A\sin B}}\end{array}\]
Further, we will use the formula \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\] and \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\] on the above expression where \[x\] is \[A\] and \[y\] is \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {A + B} \right)}}{{\sin \left( {A - B} \right)}}\]
Furthermore, we will resubstitute \[\theta + 120 = A\] and \[\theta - 30 = B\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {\theta + 120 + \theta - 30} \right)}}{{\sin \left( {\theta + 120 - \theta + 30} \right)}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {150} \right)}}\end{array}\]
Now, we will rewrite \[\sin \left( {150} \right)\] as \[\sin \left( {180 - 30} \right)\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {180 - 30} \right)}}\]
Further, we will apply the formula \[\sin \left( {180 - x} \right) = \sin x\] where \[x\] is \[30\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {30} \right)}}\]
Furthermore, we will apply the formula \[\sin \left( {\theta + 90} \right) = \cos \theta \], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\sin \left( {30} \right)}}\]
As we know \[\sin \left( {30} \right) = \dfrac{1}{2}\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\dfrac{1}{2}}}\\\dfrac{{m + n}}{{m - n}} = 2\cos 2\theta \end{array}\]
Hence, option A is correct
Note: In this type of question, we should remember the componendo and dividendo rule and know how to use them. We should also remember the addition and subtraction properties of the trigonometry function and also remember what happened when the angle is changed by the right angle.
Formula used: The formula used in this question is shown below;
1. Componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\]
2. \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
3. \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\]
4. \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\]
5. \[\sin \left( {180 - x} \right) = \sin x\]
6. \[\sin \left( {\theta + 90} \right) = \cos \theta \]
Complete step-by-step solution:
We are given that
\[m\tan \left( {\theta - 30} \right) = n\tan \left( {\theta + 120} \right)\]
Firstly, we will rearrange the given equation by taking variables on left-hand side and trigonometric function on right-hand side, we get
\[\dfrac{m}{n} = \dfrac{{\tan \left( {\theta + 120} \right)}}{{\tan \left( {\theta - 30} \right)}}\]
Let us assume \[\theta + 120 = A\] and \[\theta - 30 = B\].
Now, substitute this in the above equation, we get
\[\dfrac{m}{n} = \dfrac{{\tan A}}{{\tan B}}\] ……(1)
Further, we will apply the componendo and dividendo rule that is if \[\dfrac{{a}}{{b}} = \dfrac{{c}}{{d}}\] then \[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\].
Here, \[a\] is \[m,b\] is \[n,c\] is \[\tan A\] and \[d\] is \[\tan B\] and substitute the values in equation (1), we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\tan A + \tan B}}{{\tan A - \tan B}}\]
Furthermore, we will apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]in the above equation where \[\theta \] is \[A\] and \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A}}{{\cos A}} + \dfrac{{\sin B}}{{\cos B}}}}{{\dfrac{{\sin A}}{{\cos A}} - \dfrac{{\sin B}}{{\cos B}}}}\]
Now, we will simplify the above expression by taking LCM, we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}}}}{{\dfrac{{\sin A\cos B - \sin A\sin B}}{{\cos A\cos B}}}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin A\cos B + \cos A\sin B}}{{\sin A\cos B - \sin A\sin B}}\end{array}\]
Further, we will use the formula \[\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\] and \[\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y\] on the above expression where \[x\] is \[A\] and \[y\] is \[B\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {A + B} \right)}}{{\sin \left( {A - B} \right)}}\]
Furthermore, we will resubstitute \[\theta + 120 = A\] and \[\theta - 30 = B\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {\theta + 120 + \theta - 30} \right)}}{{\sin \left( {\theta + 120 - \theta + 30} \right)}}\\\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {150} \right)}}\end{array}\]
Now, we will rewrite \[\sin \left( {150} \right)\] as \[\sin \left( {180 - 30} \right)\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {180 - 30} \right)}}\]
Further, we will apply the formula \[\sin \left( {180 - x} \right) = \sin x\] where \[x\] is \[30\], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\sin \left( {2\theta + 90} \right)}}{{\sin \left( {30} \right)}}\]
Furthermore, we will apply the formula \[\sin \left( {\theta + 90} \right) = \cos \theta \], we get
\[\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\sin \left( {30} \right)}}\]
As we know \[\sin \left( {30} \right) = \dfrac{1}{2}\], we get
\[\begin{array}{l}\dfrac{{m + n}}{{m - n}} = \dfrac{{\cos 2\theta }}{{\dfrac{1}{2}}}\\\dfrac{{m + n}}{{m - n}} = 2\cos 2\theta \end{array}\]
Hence, option A is correct
Note: In this type of question, we should remember the componendo and dividendo rule and know how to use them. We should also remember the addition and subtraction properties of the trigonometry function and also remember what happened when the angle is changed by the right angle.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

