
If $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$, then $a$ is equal to:
$
a)\,\dfrac{2}{3} \\
b)\,\dfrac{3}{2} \\
c)\,2 \\
d)\,\dfrac{1}{2} \\
$
Answer
513.3k+ views
Hint:We are given $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$, we will firstly observe the intermediate form ${1^\infty }$in the given expression.Then using if $f(x) \to 1$for $x \to \infty $and $g(x) \to \infty $for $x \to \infty $
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}$.Using these concept we try to solve the question.
Complete step-by-step answer:
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}\,\,\,\,\,\,\,\,\, \to (1)$
Here firstly we try to solve L.H.S of (1)
Firstly,
We will consider $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$and will try to solve this limit, we can observe that $\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) \to 1$ for $x \to \infty $ and for $2x \to \infty $for $x \to \infty $.
So for $x \to \infty ,\,\,\,{\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} \to {1^\infty }$
So we can say that ${1^\infty }$ is an intermediate form.
And we know if $f(x) \to 1$for $x \to \infty $and $g(x) \to \infty $for $x \to \infty $, then
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (2)$
Now using (2) solve $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$where we take $f(x) = \left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)$ and $g(x) = 2x$
So we get
\[
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) - 1} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2a - \dfrac{4}{x}}} \\
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{2a}}\,\,\,\,\,\,\,\,\,\, \to (3) \\
\]
Now from (1) we know that
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$
Using (3) we get,
${e^3} = {e^{2a}}$
Now comparing powers we get,
$
2a = 3 \\
a = \dfrac{3}{2} \\
$
So, the correct answer is “Option B”.
Note:In this type of questions we always try to find out the intermediate form, if any. Also in (3), we used $\mathop {\lim }\limits_{x \to \infty } 2x\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) = 2a$ because we know $\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} = 0$ and $\mathop {\lim }\limits_{x \to \infty } y = y$
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}$.Using these concept we try to solve the question.
Complete step-by-step answer:
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}\,\,\,\,\,\,\,\,\, \to (1)$
Here firstly we try to solve L.H.S of (1)
Firstly,
We will consider $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$and will try to solve this limit, we can observe that $\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) \to 1$ for $x \to \infty $ and for $2x \to \infty $for $x \to \infty $.
So for $x \to \infty ,\,\,\,{\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} \to {1^\infty }$
So we can say that ${1^\infty }$ is an intermediate form.
And we know if $f(x) \to 1$for $x \to \infty $and $g(x) \to \infty $for $x \to \infty $, then
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (2)$
Now using (2) solve $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$where we take $f(x) = \left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)$ and $g(x) = 2x$
So we get
\[
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) - 1} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2a - \dfrac{4}{x}}} \\
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{2a}}\,\,\,\,\,\,\,\,\,\, \to (3) \\
\]
Now from (1) we know that
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$
Using (3) we get,
${e^3} = {e^{2a}}$
Now comparing powers we get,
$
2a = 3 \\
a = \dfrac{3}{2} \\
$
So, the correct answer is “Option B”.
Note:In this type of questions we always try to find out the intermediate form, if any. Also in (3), we used $\mathop {\lim }\limits_{x \to \infty } 2x\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) = 2a$ because we know $\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} = 0$ and $\mathop {\lim }\limits_{x \to \infty } y = y$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Write the difference between solid liquid and gas class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
