
If $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$, then $a$ is equal to:
$
a)\,\dfrac{2}{3} \\
b)\,\dfrac{3}{2} \\
c)\,2 \\
d)\,\dfrac{1}{2} \\
$
Answer
591.9k+ views
Hint:We are given $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$, we will firstly observe the intermediate form ${1^\infty }$in the given expression.Then using if $f(x) \to 1$for $x \to \infty $and $g(x) \to \infty $for $x \to \infty $
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}$.Using these concept we try to solve the question.
Complete step-by-step answer:
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}\,\,\,\,\,\,\,\,\, \to (1)$
Here firstly we try to solve L.H.S of (1)
Firstly,
We will consider $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$and will try to solve this limit, we can observe that $\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) \to 1$ for $x \to \infty $ and for $2x \to \infty $for $x \to \infty $.
So for $x \to \infty ,\,\,\,{\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} \to {1^\infty }$
So we can say that ${1^\infty }$ is an intermediate form.
And we know if $f(x) \to 1$for $x \to \infty $and $g(x) \to \infty $for $x \to \infty $, then
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (2)$
Now using (2) solve $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$where we take $f(x) = \left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)$ and $g(x) = 2x$
So we get
\[
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) - 1} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2a - \dfrac{4}{x}}} \\
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{2a}}\,\,\,\,\,\,\,\,\,\, \to (3) \\
\]
Now from (1) we know that
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$
Using (3) we get,
${e^3} = {e^{2a}}$
Now comparing powers we get,
$
2a = 3 \\
a = \dfrac{3}{2} \\
$
So, the correct answer is “Option B”.
Note:In this type of questions we always try to find out the intermediate form, if any. Also in (3), we used $\mathop {\lim }\limits_{x \to \infty } 2x\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) = 2a$ because we know $\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} = 0$ and $\mathop {\lim }\limits_{x \to \infty } y = y$
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}$.Using these concept we try to solve the question.
Complete step-by-step answer:
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}\,\,\,\,\,\,\,\,\, \to (1)$
Here firstly we try to solve L.H.S of (1)
Firstly,
We will consider $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$and will try to solve this limit, we can observe that $\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) \to 1$ for $x \to \infty $ and for $2x \to \infty $for $x \to \infty $.
So for $x \to \infty ,\,\,\,{\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} \to {1^\infty }$
So we can say that ${1^\infty }$ is an intermediate form.
And we know if $f(x) \to 1$for $x \to \infty $and $g(x) \to \infty $for $x \to \infty $, then
$\mathop {\lim }\limits_{x \to \infty } {\left( {f(x)} \right)^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to \infty } \left( {f(x) - 1} \right)g(x)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (2)$
Now using (2) solve $\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}}$where we take $f(x) = \left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)$ and $g(x) = 2x$
So we get
\[
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) - 1} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2x\left( {\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)} \right)}} \\
= {e^{\mathop {\lim }\limits_{x \to \infty } 2a - \dfrac{4}{x}}} \\
\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^{2a}}\,\,\,\,\,\,\,\,\,\, \to (3) \\
\]
Now from (1) we know that
$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right)^{2x}} = {e^3}$
Using (3) we get,
${e^3} = {e^{2a}}$
Now comparing powers we get,
$
2a = 3 \\
a = \dfrac{3}{2} \\
$
So, the correct answer is “Option B”.
Note:In this type of questions we always try to find out the intermediate form, if any. Also in (3), we used $\mathop {\lim }\limits_{x \to \infty } 2x\left( {\dfrac{a}{x} - \dfrac{4}{{{x^2}}}} \right) = 2a$ because we know $\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} = 0$ and $\mathop {\lim }\limits_{x \to \infty } y = y$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

