
If $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$, then $X =$
A . $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ -}3 & 4 \\
14 & -13 \\
\end{matrix} \right]$
B $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]$
C $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]$
D \[\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]\]
Answer
232.8k+ views
Hint: To solve this question we will take each of the options as the value of $X$ and substitute in the given equation and see if both sides are equal or not, that is if $L.H.S=R.H.S$. We will take each of the options and them. And the option which will prove $L.H.S=R.H.S$ by substituting as the value of $X$ in the equation then will be the correct answer.
Complete step by step Solution:
We will check the first option,
$\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]X = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
Let $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
\[\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]\]
After multiplication, we will get
$\left[ {\begin{array}{*{20}{c}}
{3( - 3) + 14}&{3(4) + ( - 13)} \\
{4( - 3) + 14}&{4(4) + ( - 13)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{ - 9 + 14}&{12 - 13} \\
{ - 12 + 14}&{16 - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
After solving, we get
$\left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
LHS=RHS
Hence, $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
Therefore, option A is correct.
We will now take the second option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]$.and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times (-4)+1\times 13 \\
4\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times (-4)+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-5 & 1 \\
-2 & -3 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
So the second option is incorrect.
Now we will check third option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]$ and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
23 & 25 \\
26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Hence the third option is also incorrect.
Now we will check fourth option \[\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]\] and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-23 & 25 \\
-26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Therefore, the fourth option is also incorrect.
Therefore, the correct option is (A).
Note: Before doing multiplication in matrices we need to check first the orders of the matrices then do calculations carefully. To multiply we will take each element of the column of the first matrix and then multiply with each element of rows of the other matrix and then add them .
After we checked the first option and as it was equal on both sides that is $L.H.S=R.H.S$ , it was not necessary to check all the other remaining options.
Complete step by step Solution:
We will check the first option,
$\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]X = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
Let $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
\[\left[ {\begin{array}{*{20}{c}}
3&1 \\
4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]\]
After multiplication, we will get
$\left[ {\begin{array}{*{20}{c}}
{3( - 3) + 14}&{3(4) + ( - 13)} \\
{4( - 3) + 14}&{4(4) + ( - 13)}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{ - 9 + 14}&{12 - 13} \\
{ - 12 + 14}&{16 - 13}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
After solving, we get
$\left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&{ - 1} \\
2&3
\end{array}} \right]$
LHS=RHS
Hence, $X = \left[ {\begin{array}{*{20}{c}}
{ - 3}&4 \\
{14}&{ - 13}
\end{array}} \right]$
Therefore, option A is correct.
We will now take the second option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]$.and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & -4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times (-4)+1\times 13 \\
4\times 3+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times (-4)+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-5 & 1 \\
-2 & -3 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
So the second option is incorrect.
Now we will check third option $\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]$ and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 4 \\
14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times 3+1\times 14 & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
23 & 25 \\
26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Hence the third option is also incorrect.
Now we will check fourth option \[\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]\] and substitute in the equation in place of $X$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]X=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3 & 1 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }-3 & 4 \\
-14 & 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
We will now check if $L.H.S=R.H.S$.
$\left[ \begin{matrix}
\text{ }\!\!~\!\!\text{ }3\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }3\times 4+1\times 13 \\
4\times (-3)+1\times (-14) & \text{ }\!\!~\!\!\text{ }4\times 4+1\times 13 \\
\end{matrix} \right]=\left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
$\left[ \begin{matrix}
-23 & 25 \\
-26 & 29 \\
\end{matrix} \right]\ne \left[ \begin{matrix}
5 & -1 \\
2 & 3 \\
\end{matrix} \right]$
Therefore, the fourth option is also incorrect.
Therefore, the correct option is (A).
Note: Before doing multiplication in matrices we need to check first the orders of the matrices then do calculations carefully. To multiply we will take each element of the column of the first matrix and then multiply with each element of rows of the other matrix and then add them .
After we checked the first option and as it was equal on both sides that is $L.H.S=R.H.S$ , it was not necessary to check all the other remaining options.
Recently Updated Pages
The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

