
If \[\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{{(a + \lambda )}^2}}&{{{(b + \lambda )}^2}}&{{{(c + \lambda )}^2}} \\
{{{(a - \lambda )}^2}}&{{{(b - \lambda )}^2}}&{{{(c - \lambda )}^2}}
\end{array}} \right| = k\lambda \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|\] , \[\lambda \ne 0\], then k is equal to
A. \[4\lambda abc\]
B. \[ - 4\lambda abc\]
C. \[4{\lambda ^2}\]
D. \[ - 4{\lambda ^2}\]
Answer
511.5k+ views
Hint: Here we use the concept of row transformations to convert the matrix on the left side as the matrix on the right hand side. Use the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab,{(a - b)^2} = {a^2} + {b^2} - 2ab\] to open up the values in the determinant. We bring out the constants from each row as we convert the row to a similar row on the right hand side.
* If a row in the matrix contains elements which all have a common factor say p, then we can bring out the factor from the matrix.
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
{pd}&{pe}&{pf} \\
g&h&i
\end{array}} \right| = p\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|\]
Complete step-by-step answer:
Here we name each row as a variable
First row is \[{R_1}\]
Second row is \[{R_2}\]
Third row is \[{R_3}\]
We have the matrix
\[\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{{(a + \lambda )}^2}}&{{{(b + \lambda )}^2}}&{{{(c + \lambda )}^2}} \\
{{{(a - \lambda )}^2}}&{{{(b - \lambda )}^2}}&{{{(c - \lambda )}^2}}
\end{array}} \right|\]
Opening up the values in squares in the second row and the third row using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] and \[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{a^2} + {\lambda ^2} + 2a\lambda }&{{b^2} + {\lambda ^2} + 2b\lambda }&{{c^2} + {\lambda ^2} + 2c\lambda } \\
{{a^2} + {\lambda ^2} - 2a\lambda }&{{b^2} + {\lambda ^2} - 2b\lambda }&{{c^2} + {\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we use the row transformation \[{R_2} \to {R_2} - {R_1};{R_3} \to {R_3} - {R_1}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{\lambda ^2} + 2a\lambda }&{{\lambda ^2} + 2b\lambda }&{{\lambda ^2} + 2c\lambda } \\
{{\lambda ^2} - 2a\lambda }&{{\lambda ^2} - 2b\lambda }&{{\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we use the row transformation \[{R_2} \to {R_2} - {R_3}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{4a\lambda }&{4b\lambda }&{4c\lambda } \\
{{\lambda ^2} - 2a\lambda }&{{\lambda ^2} - 2b\lambda }&{{\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we take 2 common from \[{R_2}\]
\[ \Rightarrow 2\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{2a\lambda }&{2b\lambda }&{2c\lambda } \\
{{\lambda ^2} - 2a\lambda }&{{\lambda ^2} - 2b\lambda }&{{\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we use row transformation \[{R_3} \to {R_3} + {R_2}\]
\[ \Rightarrow 2\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{2a\lambda }&{2b\lambda }&{2c\lambda } \\
{{\lambda ^2}}&{{\lambda ^2}}&{{\lambda ^2}}
\end{array}} \right|\]
Taking \[2\lambda \]common from \[{R_2}\]and taking \[{\lambda ^2}\]common from \[{R_3}\]
\[ \Rightarrow 2({\lambda ^2})(2\lambda )\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|\]
Multiplying the terms outside the matrix
\[ \Rightarrow 4{\lambda ^3}\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|\] … (1)
No we compare the equation (1) with RHS of the question
\[ \Rightarrow 4{\lambda ^3}\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right| = k\lambda \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|\]
Equating the constant terms outside the matrix
\[ \Rightarrow 4{\lambda ^3} = k\lambda \]
Divide both sides of the equation by \[\lambda \]
\[ \Rightarrow \dfrac{{4{\lambda ^3}}}{\lambda } = \dfrac{{k\lambda }}{\lambda }\]
Cancel the same terms from numerator and denominator from both sides of the equation.
\[k = 4{\lambda ^2}\]
So, option C is correct.
Note: Students many times start applying any row transformations to make the matrix on the left hand side easy, but remember that we apply row transformations in such a way that our matrix becomes similar to the matrix on the right side. Also, don’t directly subtract in the first step, always use the formula for opening the squares and then subtract.
* If a row in the matrix contains elements which all have a common factor say p, then we can bring out the factor from the matrix.
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
{pd}&{pe}&{pf} \\
g&h&i
\end{array}} \right| = p\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|\]
Complete step-by-step answer:
Here we name each row as a variable
First row is \[{R_1}\]
Second row is \[{R_2}\]
Third row is \[{R_3}\]
We have the matrix
\[\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{{(a + \lambda )}^2}}&{{{(b + \lambda )}^2}}&{{{(c + \lambda )}^2}} \\
{{{(a - \lambda )}^2}}&{{{(b - \lambda )}^2}}&{{{(c - \lambda )}^2}}
\end{array}} \right|\]
Opening up the values in squares in the second row and the third row using the formula \[{(a + b)^2} = {a^2} + {b^2} + 2ab\] and \[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{a^2} + {\lambda ^2} + 2a\lambda }&{{b^2} + {\lambda ^2} + 2b\lambda }&{{c^2} + {\lambda ^2} + 2c\lambda } \\
{{a^2} + {\lambda ^2} - 2a\lambda }&{{b^2} + {\lambda ^2} - 2b\lambda }&{{c^2} + {\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we use the row transformation \[{R_2} \to {R_2} - {R_1};{R_3} \to {R_3} - {R_1}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{{\lambda ^2} + 2a\lambda }&{{\lambda ^2} + 2b\lambda }&{{\lambda ^2} + 2c\lambda } \\
{{\lambda ^2} - 2a\lambda }&{{\lambda ^2} - 2b\lambda }&{{\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we use the row transformation \[{R_2} \to {R_2} - {R_3}\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{4a\lambda }&{4b\lambda }&{4c\lambda } \\
{{\lambda ^2} - 2a\lambda }&{{\lambda ^2} - 2b\lambda }&{{\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we take 2 common from \[{R_2}\]
\[ \Rightarrow 2\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{2a\lambda }&{2b\lambda }&{2c\lambda } \\
{{\lambda ^2} - 2a\lambda }&{{\lambda ^2} - 2b\lambda }&{{\lambda ^2} - 2c\lambda }
\end{array}} \right|\]
Now we use row transformation \[{R_3} \to {R_3} + {R_2}\]
\[ \Rightarrow 2\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
{2a\lambda }&{2b\lambda }&{2c\lambda } \\
{{\lambda ^2}}&{{\lambda ^2}}&{{\lambda ^2}}
\end{array}} \right|\]
Taking \[2\lambda \]common from \[{R_2}\]and taking \[{\lambda ^2}\]common from \[{R_3}\]
\[ \Rightarrow 2({\lambda ^2})(2\lambda )\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|\]
Multiplying the terms outside the matrix
\[ \Rightarrow 4{\lambda ^3}\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|\] … (1)
No we compare the equation (1) with RHS of the question
\[ \Rightarrow 4{\lambda ^3}\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right| = k\lambda \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\
a&b&c \\
1&1&1
\end{array}} \right|\]
Equating the constant terms outside the matrix
\[ \Rightarrow 4{\lambda ^3} = k\lambda \]
Divide both sides of the equation by \[\lambda \]
\[ \Rightarrow \dfrac{{4{\lambda ^3}}}{\lambda } = \dfrac{{k\lambda }}{\lambda }\]
Cancel the same terms from numerator and denominator from both sides of the equation.
\[k = 4{\lambda ^2}\]
So, option C is correct.
Note: Students many times start applying any row transformations to make the matrix on the left hand side easy, but remember that we apply row transformations in such a way that our matrix becomes similar to the matrix on the right side. Also, don’t directly subtract in the first step, always use the formula for opening the squares and then subtract.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
