
If $k$ is a scalar matrix and $I$is a unit matrix of order $3$then $adj(k\,I)=$.
A. ${{k}^{3}}I$
B. ${{k}^{2}}I$
C. $-{{k}^{3}}I$
D. $-{{k}^{2}}I$
Answer
233.1k+ views
Hint: Scalar matrix can be defined as the square matrix in which all the elements of the principal diagonal are some constant and all the other elements are zero.
Identity matrix can be defined as the square matrix in which all the elements of the principal diagonal are zero and all the other elements are zero. The identity matrix of order $3$is $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$.
Complete step by step solution: We are given that $k$ is a scalar matrix and $I$is a unit matrix of order $3$and we have to find the value of $adj(k\,I)$.
We will take an identity matrix of order $3$ $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$ and a scalar matrix $k$. Now we will multiply both the matrices.
$kI=k\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$
$kI=\left( \begin{matrix}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k \\
\end{matrix} \right)$
Now we will find the adjoint of the matrix.
$adj(kI)=\left( \begin{matrix}
{{k}^{2}} & 0 & 0 \\
0 & {{k}^{2}} & 0 \\
0 & 0 & {{k}^{2}} \\
\end{matrix} \right)$
Taking ${{k}^{2}}$common from the matrix,
\[adj(kI)={{k}^{2}}\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
\[adj(kI)={{k}^{2}}I\]
The value of $adj(k\,I)$is \[adj(kI)={{k}^{2}}I\] where$k$ is a scalar matrix and $I$is a unit matrix of order $
Option ‘B’ is correct
Note: The relationship between the scalar matrix and the unit matrix is $Constant\times Identity\,\,matrix=Scalar\,matrix$.
All of the scalar matrices are symmetric in nature. The zero matrix is also a scalar matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix. Let us take a matrix of order $3$be$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$ . Then the transpose of this matrix will be${{A}^{T}}=\left( \begin{matrix}
{{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\
{{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\
{{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\
\end{matrix} \right)$ where $\left( \begin{matrix}
{{A}_{11}} & {{A}_{12}} & {{A}_{13}} \\
{{A}_{21}} & {{A}_{22}} & {{A}_{23}} \\
{{A}_{31}} & {{A}_{32}} & {{A}_{33}} \\
\end{matrix} \right)$ is the co-factor.
The relationship between the adjoint of the matrix and the identity matrix is $A\,(adj.A)=\,(adj.A).A=|A|I$.
For any of the scalar $k$, the adjoint will be $\,(adj\,kA)=\,{{k}^{n-1}}adj.A$.
Identity matrix can be defined as the square matrix in which all the elements of the principal diagonal are zero and all the other elements are zero. The identity matrix of order $3$is $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$.
Complete step by step solution: We are given that $k$ is a scalar matrix and $I$is a unit matrix of order $3$and we have to find the value of $adj(k\,I)$.
We will take an identity matrix of order $3$ $I=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$ and a scalar matrix $k$. Now we will multiply both the matrices.
$kI=k\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)$
$kI=\left( \begin{matrix}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k \\
\end{matrix} \right)$
Now we will find the adjoint of the matrix.
$adj(kI)=\left( \begin{matrix}
{{k}^{2}} & 0 & 0 \\
0 & {{k}^{2}} & 0 \\
0 & 0 & {{k}^{2}} \\
\end{matrix} \right)$
Taking ${{k}^{2}}$common from the matrix,
\[adj(kI)={{k}^{2}}\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
\[adj(kI)={{k}^{2}}I\]
The value of $adj(k\,I)$is \[adj(kI)={{k}^{2}}I\] where$k$ is a scalar matrix and $I$is a unit matrix of order $
Option ‘B’ is correct
Note: The relationship between the scalar matrix and the unit matrix is $Constant\times Identity\,\,matrix=Scalar\,matrix$.
All of the scalar matrices are symmetric in nature. The zero matrix is also a scalar matrix.
The adjoint of the matrix can be defined as the transpose of the cofactor of the matrix. Let us take a matrix of order $3$be$A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$ . Then the transpose of this matrix will be${{A}^{T}}=\left( \begin{matrix}
{{a}_{11}} & {{a}_{21}} & {{a}_{31}} \\
{{a}_{12}} & {{a}_{22}} & {{a}_{32}} \\
{{a}_{13}} & {{a}_{23}} & {{a}_{33}} \\
\end{matrix} \right)$ where $\left( \begin{matrix}
{{A}_{11}} & {{A}_{12}} & {{A}_{13}} \\
{{A}_{21}} & {{A}_{22}} & {{A}_{23}} \\
{{A}_{31}} & {{A}_{32}} & {{A}_{33}} \\
\end{matrix} \right)$ is the co-factor.
The relationship between the adjoint of the matrix and the identity matrix is $A\,(adj.A)=\,(adj.A).A=|A|I$.
For any of the scalar $k$, the adjoint will be $\,(adj\,kA)=\,{{k}^{n-1}}adj.A$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

