
If 𝜎 is the standard deviation of a random variable X, then, the standard deviation of the random variable \[\left( {\dfrac{{aX + b}}{c}} \right)\], where a, b ϵ R is
a) \[a\sum + b\]
b) \[\left| {\dfrac{a}{c}} \right|\sigma \]
c) \[\left| a \right|\sum + b\]
d) \[{a^2}\sum \]
Answer
232.8k+ views
Hint: Variance is the average of the squared deviations from the mean value. To calculate the variance, subtract the mean from each number and then square the results to find the squared differences and then find the average of those squared differences. The standard deviation can be calculated by taking the square root of variance.
Formula Used:
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{({Y_i} - \overline Y )}^2}} \]
Complete step by step Solution:
Given: Standard deviation of a variable X is \[\sigma \]i.e. \[{\sigma _X} = \sigma \].
Let \[Y = \left( {\dfrac{{aX + b}}{c}} \right)\]
The first step is to find the mean value of Y.
Therefore \[\overline Y = \overline {\dfrac{{aX + b}}{c}} \] --- eq (1)
In eq (1), \[\overline Y \]represents the mean value of Y. X is a random variable whereas a, b, and c are constants.
Therefore, \[\overline Y = \dfrac{a}{c}\overline X + \dfrac{b}{c}\]
\[\overline Y = \dfrac{{a\overline X + b}}{c}\] --eq (2)
Now calculate the variance of Y
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{({Y_i} - \overline Y )}^2}} \] -- eq (3)
\[{Y_i} = \dfrac{{a{X_i} + b}}{c}\] -- eq (4)
Substitute eq (2) and eq (4) in eq (3).
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{X_i} + b}}{c} - \dfrac{{a\overline X + b}}{c}} \right)}^2}} \]
Simplify the above equation to get,
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{X_i} - a\overline X }}{c}} \right)}^2}} \]
Take \[\dfrac{{{a^2}}}{{{c^2}}}\] as a common term.
\[{\sigma _Y}^2 = \dfrac{{{a^2}}}{{{c^2}}}\,\,\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \overline X } \right)}^2}} \]-- eq (5)
Since the term \[\dfrac{1}{{n\,}}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \overline X } \right)}^2}} \]can be written as Variance of X i.e. \[{\sigma _X}^2\], eq (5) becomes:
\[{\sigma _Y}^2 = \dfrac{{{a^2}}}{{{c^2}}}\,\,{\sigma _X}^2\]-- eq (6)
From the definition, we know that the standard deviation is the square root of Variance. Therefore, taking the square root of eq (6).
\[{\sigma _Y} = \left| {\dfrac{a}{c}} \right|\,\,{\sigma _X}\] - eq (7)
\[{\sigma _X}\]= Standard deviation of Variable X
\[{\sigma _X} = \sigma \] [Given: 𝜎 is the standard deviation of a random variable X.] Put \[{\sigma _X} = \sigma \] in eq (7)
\[{\sigma _Y} = \left| {\dfrac{a}{c}} \right|\,\,\sigma \]
Hence, the correct option is 2.
Note: To solve the statistics questions related to Variance and standard deviation, one must be thorough with the theoretical concepts. Also keep in mind the formulas related to mean value, variance, and standard deviation. Once a variance is calculated, the standard deviation can be easily known by taking the square root of the variance.
Formula Used:
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{({Y_i} - \overline Y )}^2}} \]
Complete step by step Solution:
Given: Standard deviation of a variable X is \[\sigma \]i.e. \[{\sigma _X} = \sigma \].
Let \[Y = \left( {\dfrac{{aX + b}}{c}} \right)\]
The first step is to find the mean value of Y.
Therefore \[\overline Y = \overline {\dfrac{{aX + b}}{c}} \] --- eq (1)
In eq (1), \[\overline Y \]represents the mean value of Y. X is a random variable whereas a, b, and c are constants.
Therefore, \[\overline Y = \dfrac{a}{c}\overline X + \dfrac{b}{c}\]
\[\overline Y = \dfrac{{a\overline X + b}}{c}\] --eq (2)
Now calculate the variance of Y
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{({Y_i} - \overline Y )}^2}} \] -- eq (3)
\[{Y_i} = \dfrac{{a{X_i} + b}}{c}\] -- eq (4)
Substitute eq (2) and eq (4) in eq (3).
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{X_i} + b}}{c} - \dfrac{{a\overline X + b}}{c}} \right)}^2}} \]
Simplify the above equation to get,
\[{\sigma _Y}^2 = \dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {\dfrac{{a{X_i} - a\overline X }}{c}} \right)}^2}} \]
Take \[\dfrac{{{a^2}}}{{{c^2}}}\] as a common term.
\[{\sigma _Y}^2 = \dfrac{{{a^2}}}{{{c^2}}}\,\,\dfrac{1}{n}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \overline X } \right)}^2}} \]-- eq (5)
Since the term \[\dfrac{1}{{n\,}}\sum\limits_{i = 1}^n {{{\left( {{X_i} - \overline X } \right)}^2}} \]can be written as Variance of X i.e. \[{\sigma _X}^2\], eq (5) becomes:
\[{\sigma _Y}^2 = \dfrac{{{a^2}}}{{{c^2}}}\,\,{\sigma _X}^2\]-- eq (6)
From the definition, we know that the standard deviation is the square root of Variance. Therefore, taking the square root of eq (6).
\[{\sigma _Y} = \left| {\dfrac{a}{c}} \right|\,\,{\sigma _X}\] - eq (7)
\[{\sigma _X}\]= Standard deviation of Variable X
\[{\sigma _X} = \sigma \] [Given: 𝜎 is the standard deviation of a random variable X.] Put \[{\sigma _X} = \sigma \] in eq (7)
\[{\sigma _Y} = \left| {\dfrac{a}{c}} \right|\,\,\sigma \]
Hence, the correct option is 2.
Note: To solve the statistics questions related to Variance and standard deviation, one must be thorough with the theoretical concepts. Also keep in mind the formulas related to mean value, variance, and standard deviation. Once a variance is calculated, the standard deviation can be easily known by taking the square root of the variance.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

