
If in the expansion of ${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n}$ , the coefficients of $x$ and ${x^2}$ are 3 and -6 respectively, then the value of m is:
$A.$ 6
$B.$ 9
$C.$ 12
$D.$ 24
Answer
217.8k+ views
Hint: Use binomial theorem of series expansion.
Expanding both the terms of the above term we get:
\[
{\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n} \\
= \left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right)\left( {1 - {}^n{C_1}{x^1} + {}^n{C_2}{x^2} - {}^n{C_3}{x^3} + ........} \right) \\
= 1\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
- {}^n{C_1}{x^1}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ {}^n{C_2}{x^2}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ \cdots \cdots \cdots \\
\\
\]
Expanding the equation further to find the coefficients, we get:
\[ \Rightarrow 1 + x\left( {{}^m{C_1} - {}^n{C_1}} \right) + {x^2}\left( {{}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2}} \right) + \cdots \cdots \]
Hence, the coefficient of the term containing $x$ is
$
\Rightarrow {}^m{C_1} - {}^n{C_1} = 3 \\
\Rightarrow m - n = 3 \\
$ ---- (1)
Similarly coefficient of the term containing ${x^2}$ is
$
\Rightarrow {}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2} = - 6 \\
\Rightarrow m\left( {m - 1} \right) - 2mn + n\left( {n - 1} \right) = - 12 \\
\Rightarrow {m^2} - m - 2mn + {n^2} - n = - 12 \\
\Rightarrow {\left( {m - n} \right)^2} - \left( {m + n} \right) = - 12 \\
\Rightarrow 9 - \left( {m + n} \right) = - 12 \\
\Rightarrow m + n = 21 \\
$ ---- (2)
Adding equation 1 and 2 to find the value of m
$
\Rightarrow \left( {m + n} \right) + \left( {m - n} \right) = 21 + 3 \\
\Rightarrow 2m = 24 \\
\Rightarrow m = 12 \\
$
Hence option C is the correct answer.
Note: - In the above question binomial theorem of series expansion has been used in the very first step to expand the terms. We do not need to expand and multiply the whole series as we were concerned with only the first and second power of x so only two to three terms have been considered.
Expanding both the terms of the above term we get:
\[
{\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n} \\
= \left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right)\left( {1 - {}^n{C_1}{x^1} + {}^n{C_2}{x^2} - {}^n{C_3}{x^3} + ........} \right) \\
= 1\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
- {}^n{C_1}{x^1}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ {}^n{C_2}{x^2}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ \cdots \cdots \cdots \\
\\
\]
Expanding the equation further to find the coefficients, we get:
\[ \Rightarrow 1 + x\left( {{}^m{C_1} - {}^n{C_1}} \right) + {x^2}\left( {{}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2}} \right) + \cdots \cdots \]
Hence, the coefficient of the term containing $x$ is
$
\Rightarrow {}^m{C_1} - {}^n{C_1} = 3 \\
\Rightarrow m - n = 3 \\
$ ---- (1)
Similarly coefficient of the term containing ${x^2}$ is
$
\Rightarrow {}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2} = - 6 \\
\Rightarrow m\left( {m - 1} \right) - 2mn + n\left( {n - 1} \right) = - 12 \\
\Rightarrow {m^2} - m - 2mn + {n^2} - n = - 12 \\
\Rightarrow {\left( {m - n} \right)^2} - \left( {m + n} \right) = - 12 \\
\Rightarrow 9 - \left( {m + n} \right) = - 12 \\
\Rightarrow m + n = 21 \\
$ ---- (2)
Adding equation 1 and 2 to find the value of m
$
\Rightarrow \left( {m + n} \right) + \left( {m - n} \right) = 21 + 3 \\
\Rightarrow 2m = 24 \\
\Rightarrow m = 12 \\
$
Hence option C is the correct answer.
Note: - In the above question binomial theorem of series expansion has been used in the very first step to expand the terms. We do not need to expand and multiply the whole series as we were concerned with only the first and second power of x so only two to three terms have been considered.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

