
If in the expansion of ${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n}$ , the coefficients of $x$ and ${x^2}$ are 3 and -6 respectively, then the value of m is:
$A.$ 6
$B.$ 9
$C.$ 12
$D.$ 24
Answer
232.8k+ views
Hint: Use binomial theorem of series expansion.
Expanding both the terms of the above term we get:
\[
{\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n} \\
= \left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right)\left( {1 - {}^n{C_1}{x^1} + {}^n{C_2}{x^2} - {}^n{C_3}{x^3} + ........} \right) \\
= 1\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
- {}^n{C_1}{x^1}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ {}^n{C_2}{x^2}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ \cdots \cdots \cdots \\
\\
\]
Expanding the equation further to find the coefficients, we get:
\[ \Rightarrow 1 + x\left( {{}^m{C_1} - {}^n{C_1}} \right) + {x^2}\left( {{}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2}} \right) + \cdots \cdots \]
Hence, the coefficient of the term containing $x$ is
$
\Rightarrow {}^m{C_1} - {}^n{C_1} = 3 \\
\Rightarrow m - n = 3 \\
$ ---- (1)
Similarly coefficient of the term containing ${x^2}$ is
$
\Rightarrow {}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2} = - 6 \\
\Rightarrow m\left( {m - 1} \right) - 2mn + n\left( {n - 1} \right) = - 12 \\
\Rightarrow {m^2} - m - 2mn + {n^2} - n = - 12 \\
\Rightarrow {\left( {m - n} \right)^2} - \left( {m + n} \right) = - 12 \\
\Rightarrow 9 - \left( {m + n} \right) = - 12 \\
\Rightarrow m + n = 21 \\
$ ---- (2)
Adding equation 1 and 2 to find the value of m
$
\Rightarrow \left( {m + n} \right) + \left( {m - n} \right) = 21 + 3 \\
\Rightarrow 2m = 24 \\
\Rightarrow m = 12 \\
$
Hence option C is the correct answer.
Note: - In the above question binomial theorem of series expansion has been used in the very first step to expand the terms. We do not need to expand and multiply the whole series as we were concerned with only the first and second power of x so only two to three terms have been considered.
Expanding both the terms of the above term we get:
\[
{\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n} \\
= \left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right)\left( {1 - {}^n{C_1}{x^1} + {}^n{C_2}{x^2} - {}^n{C_3}{x^3} + ........} \right) \\
= 1\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
- {}^n{C_1}{x^1}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ {}^n{C_2}{x^2}\left( {1 + {}^m{C_1}{x^1} + {}^m{C_2}{x^2} + {}^m{C_3}{x^3} + ........} \right) \\
+ \cdots \cdots \cdots \\
\\
\]
Expanding the equation further to find the coefficients, we get:
\[ \Rightarrow 1 + x\left( {{}^m{C_1} - {}^n{C_1}} \right) + {x^2}\left( {{}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2}} \right) + \cdots \cdots \]
Hence, the coefficient of the term containing $x$ is
$
\Rightarrow {}^m{C_1} - {}^n{C_1} = 3 \\
\Rightarrow m - n = 3 \\
$ ---- (1)
Similarly coefficient of the term containing ${x^2}$ is
$
\Rightarrow {}^m{C_2} - {}^m{C_1}{}^n{C_1} + {}^n{C_2} = - 6 \\
\Rightarrow m\left( {m - 1} \right) - 2mn + n\left( {n - 1} \right) = - 12 \\
\Rightarrow {m^2} - m - 2mn + {n^2} - n = - 12 \\
\Rightarrow {\left( {m - n} \right)^2} - \left( {m + n} \right) = - 12 \\
\Rightarrow 9 - \left( {m + n} \right) = - 12 \\
\Rightarrow m + n = 21 \\
$ ---- (2)
Adding equation 1 and 2 to find the value of m
$
\Rightarrow \left( {m + n} \right) + \left( {m - n} \right) = 21 + 3 \\
\Rightarrow 2m = 24 \\
\Rightarrow m = 12 \\
$
Hence option C is the correct answer.
Note: - In the above question binomial theorem of series expansion has been used in the very first step to expand the terms. We do not need to expand and multiply the whole series as we were concerned with only the first and second power of x so only two to three terms have been considered.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

