
If in general quadratic equation $f(x,y)=0$, $\Delta =0$ and ${{h}^{2}}=ab$, then the equation represents
A. Two parallel straight lines
B. Two perpendicular straight lines
C. Two coincident lines
D. None of these
Answer
232.8k+ views
Hint: In this question, we are to find the type of the given quadratic function that represents a pair of lines. For this, the given conditions are applied in the quadratic function. So, on substituting them we get the type of those lines.
Formula Used:The combined equation of pair of straight lines is written as
$H\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}=0$
This is called a homogenous equation of the second degree in $x$ and $y$
And
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This is called a general equation of the second degree in $x$ and $y$.
If ${{h}^{2}}If ${{h}^{2}}=ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents coincident lines.
If ${{h}^{2}}>ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two real and different lines that pass through the origin.
Thus, the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two lines. They are:
$ax+hy\pm y\sqrt{{{h}^{2}}-ab}=0$
If $S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ represents a pair of lines, then
i) $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$ and
ii) ${{h}^{2}}\ge ab,{{g}^{2}}\ge ac,{{f}^{2}}\ge bc$
Complete step by step solution:Given quadratic function is,
$f(x,y)=0$
That is,
$f(x,y)=S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This equation represents pair of lines if $\Delta =0$.
Here, $\Delta =abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$
Consider the two lines as
\[\begin{align}
& {{l}_{1}}x+{{m}_{1}}y+{{n}_{1}}=0\text{ }...(1) \\
& {{l}_{2}}x+{{m}_{2}}y+{{n}_{2}}=0\text{ }...(2) \\
\end{align}\]
For the combined equation, multiplying these two equations, we get
\[\begin{align}
& ({{l}_{1}}x+{{m}_{1}}y+{{n}_{1}})({{l}_{2}}x+{{m}_{2}}y+{{n}_{2}}) \\
& \Rightarrow {{l}_{1}}{{l}_{2}}{{x}^{2}}+{{l}_{1}}{{m}_{2}}xy+{{l}_{1}}{{n}_{2}}x+{{l}_{2}}{{m}_{1}}xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}+{{m}_{1}}{{n}_{2}}y+{{l}_{2}}{{n}_{1}}x+{{n}_{1}}{{m}_{2}}y+{{n}_{1}}{{n}_{2}} \\
& \Rightarrow {{l}_{1}}{{l}_{2}}{{x}^{2}}+({{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}})xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}+({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}})x+({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}})y+{{n}_{1}}{{n}_{2}}\text{ }...(3) \\
\end{align}\]
By comparing (3) and the general equation, we get
$a={{l}_{1}}{{l}_{2}};b={{m}_{1}}{{m}_{2}};c={{n}_{1}}{{n}_{2}};2h=({{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}});2f=({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}});2g=({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}});$
Then,
\[\begin{align}
& (2f)(2g)(2h)=({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}})({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}})({{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}}) \\
& \Rightarrow ({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}})\left( {{l}_{1}}^{2}{{n}_{2}}{{m}_{2}}+{{l}_{1}}{{l}_{2}}{{m}_{1}}{{n}_{2}}+{{l}_{1}}{{l}_{2}}{{n}_{1}}{{m}_{2}}+{{l}_{2}}^{2}{{m}_{1}}{{n}_{1}} \right) \\
& \Rightarrow {{l}_{1}}^{2}{{n}_{2}}^{2}{{m}_{2}}{{m}_{1}}+{{l}_{1}}{{l}_{2}}{{m}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}}+{{l}_{2}}^{2}{{m}_{1}}^{2}{{n}_{1}}{{n}_{2}}+{{l}_{1}}^{2}{{m}_{2}}^{2}{{n}_{1}}{{n}_{2}}+{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}}+{{l}_{1}}{{l}_{2}}{{n}_{1}}^{2}{{m}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1}}^{2}{{m}_{1}}{{m}_{2}} \\
& \Rightarrow {{l}_{1}}{{l}_{2}}({{m}_{1}}^{2}{{n}_{2}}^{2}+{{n}_{1}}^{2}{{m}_{2}}^{2})+{{m}_{1}}{{m}_{2}}({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1}}^{2})+{{n}_{1}}{{n}_{2}}({{l}_{2}}^{2}{{m}_{1}}^{2}+{{l}_{1}}^{2}{{m}_{2}}^{2})+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}} \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& 8fgh={{l}_{1}}{{l}_{2}}\left[ {{\left( {{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}} \right)}^{2}}-2{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}} \right]+{{m}_{1}}{{m}_{2}}\left[ {{\left( {{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}} \right)}^{2}}-2{{l}_{1}}{{n}_{2}}{{l}_{2}}{{n}_{1}} \right] \\
& +{{n}_{1}}{{n}_{2}}\left[ {{\left( {{l}_{2}}{{m}_{1}}+{{l}_{1}}{{m}_{2}} \right)}^{2}}-2{{l}_{2}}{{m}_{1}}{{l}_{1}}{{m}_{2}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}} \\
& \Rightarrow a\left[ {{(2f)}^{2}}-2bc \right]+b\left[ {{(2g)}^{2}}-2ac \right]+c\left[ {{(2h)}^{2}}-2ab \right]+2abc \\
& \Rightarrow 4a{{f}^{2}}-2abc+4b{{g}^{2}}-2abc+4b{{g}^{2}}-2abc+2abc \\
& \Rightarrow -4abc+4a{{f}^{2}}+4b{{g}^{2}}+4b{{g}^{2}} \\
\end{align}\]
\[\begin{align}
& 8fgh=-4abc+4a{{f}^{2}}+4b{{g}^{2}}+4b{{g}^{2}} \\
& \Rightarrow 2fgh=-abc+a{{f}^{2}}+b{{g}^{2}}+b{{g}^{2}} \\
& \Rightarrow abc+afgh-a{{f}^{2}}-b{{g}^{2}}-b{{g}^{2}}=0 \\
& \therefore \Delta =0 \\
\end{align}\]
Thus, the given equation represents pair of straight lines.
If ${{h}^{2}}=ab$, the angle between these two lines becomes zero. I.e.,
$\cos \theta =\dfrac{a+b}{\sqrt{{{(a-b)}^{2}}+4{{h}^{2}}}}$
Substituting ${{h}^{2}}=ab$ in the above angle, we get
$\begin{align}
& \cos \theta =\dfrac{a+b}{\sqrt{{{(a-b)}^{2}}+4(ab)}} \\
& \text{ }=\dfrac{a+b}{a+b} \\
& \text{ }=1 \\
& \Rightarrow \theta ={{\cos }^{-1}}(1)=0 \\
\end{align}$
Since the angle between them is zero, these two lines are parallel.
Option ‘A’ is correct
Note: To solve such a problem, we need to assume two lines and solve them in the above process to prove them to be a pair of parallel lines.
Formula Used:The combined equation of pair of straight lines is written as
$H\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}=0$
This is called a homogenous equation of the second degree in $x$ and $y$
And
$S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This is called a general equation of the second degree in $x$ and $y$.
If ${{h}^{2}}
If ${{h}^{2}}>ab$, then $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two real and different lines that pass through the origin.
Thus, the equation $a{{x}^{2}}+2hxy+b{{y}^{2}}=0$ represents two lines. They are:
$ax+hy\pm y\sqrt{{{h}^{2}}-ab}=0$
If $S\equiv a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$ represents a pair of lines, then
i) $abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$ and
ii) ${{h}^{2}}\ge ab,{{g}^{2}}\ge ac,{{f}^{2}}\ge bc$
Complete step by step solution:Given quadratic function is,
$f(x,y)=0$
That is,
$f(x,y)=S=a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0$
This equation represents pair of lines if $\Delta =0$.
Here, $\Delta =abc+2fgh-a{{f}^{2}}-b{{g}^{2}}-c{{h}^{2}}=0$
Consider the two lines as
\[\begin{align}
& {{l}_{1}}x+{{m}_{1}}y+{{n}_{1}}=0\text{ }...(1) \\
& {{l}_{2}}x+{{m}_{2}}y+{{n}_{2}}=0\text{ }...(2) \\
\end{align}\]
For the combined equation, multiplying these two equations, we get
\[\begin{align}
& ({{l}_{1}}x+{{m}_{1}}y+{{n}_{1}})({{l}_{2}}x+{{m}_{2}}y+{{n}_{2}}) \\
& \Rightarrow {{l}_{1}}{{l}_{2}}{{x}^{2}}+{{l}_{1}}{{m}_{2}}xy+{{l}_{1}}{{n}_{2}}x+{{l}_{2}}{{m}_{1}}xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}+{{m}_{1}}{{n}_{2}}y+{{l}_{2}}{{n}_{1}}x+{{n}_{1}}{{m}_{2}}y+{{n}_{1}}{{n}_{2}} \\
& \Rightarrow {{l}_{1}}{{l}_{2}}{{x}^{2}}+({{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}})xy+{{m}_{1}}{{m}_{2}}{{y}^{2}}+({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}})x+({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}})y+{{n}_{1}}{{n}_{2}}\text{ }...(3) \\
\end{align}\]
By comparing (3) and the general equation, we get
$a={{l}_{1}}{{l}_{2}};b={{m}_{1}}{{m}_{2}};c={{n}_{1}}{{n}_{2}};2h=({{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}});2f=({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}});2g=({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}});$
Then,
\[\begin{align}
& (2f)(2g)(2h)=({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}})({{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}})({{l}_{1}}{{m}_{2}}+{{l}_{2}}{{m}_{1}}) \\
& \Rightarrow ({{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}})\left( {{l}_{1}}^{2}{{n}_{2}}{{m}_{2}}+{{l}_{1}}{{l}_{2}}{{m}_{1}}{{n}_{2}}+{{l}_{1}}{{l}_{2}}{{n}_{1}}{{m}_{2}}+{{l}_{2}}^{2}{{m}_{1}}{{n}_{1}} \right) \\
& \Rightarrow {{l}_{1}}^{2}{{n}_{2}}^{2}{{m}_{2}}{{m}_{1}}+{{l}_{1}}{{l}_{2}}{{m}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}}+{{l}_{2}}^{2}{{m}_{1}}^{2}{{n}_{1}}{{n}_{2}}+{{l}_{1}}^{2}{{m}_{2}}^{2}{{n}_{1}}{{n}_{2}}+{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}}+{{l}_{1}}{{l}_{2}}{{n}_{1}}^{2}{{m}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1}}^{2}{{m}_{1}}{{m}_{2}} \\
& \Rightarrow {{l}_{1}}{{l}_{2}}({{m}_{1}}^{2}{{n}_{2}}^{2}+{{n}_{1}}^{2}{{m}_{2}}^{2})+{{m}_{1}}{{m}_{2}}({{l}_{1}}^{2}{{n}_{2}}^{2}+{{l}_{2}}^{2}{{n}_{1}}^{2})+{{n}_{1}}{{n}_{2}}({{l}_{2}}^{2}{{m}_{1}}^{2}+{{l}_{1}}^{2}{{m}_{2}}^{2})+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}} \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& 8fgh={{l}_{1}}{{l}_{2}}\left[ {{\left( {{m}_{1}}{{n}_{2}}+{{n}_{1}}{{m}_{2}} \right)}^{2}}-2{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}} \right]+{{m}_{1}}{{m}_{2}}\left[ {{\left( {{l}_{1}}{{n}_{2}}+{{l}_{2}}{{n}_{1}} \right)}^{2}}-2{{l}_{1}}{{n}_{2}}{{l}_{2}}{{n}_{1}} \right] \\
& +{{n}_{1}}{{n}_{2}}\left[ {{\left( {{l}_{2}}{{m}_{1}}+{{l}_{1}}{{m}_{2}} \right)}^{2}}-2{{l}_{2}}{{m}_{1}}{{l}_{1}}{{m}_{2}} \right]+2{{l}_{1}}{{l}_{2}}{{m}_{1}}{{m}_{2}}{{n}_{1}}{{n}_{2}} \\
& \Rightarrow a\left[ {{(2f)}^{2}}-2bc \right]+b\left[ {{(2g)}^{2}}-2ac \right]+c\left[ {{(2h)}^{2}}-2ab \right]+2abc \\
& \Rightarrow 4a{{f}^{2}}-2abc+4b{{g}^{2}}-2abc+4b{{g}^{2}}-2abc+2abc \\
& \Rightarrow -4abc+4a{{f}^{2}}+4b{{g}^{2}}+4b{{g}^{2}} \\
\end{align}\]
\[\begin{align}
& 8fgh=-4abc+4a{{f}^{2}}+4b{{g}^{2}}+4b{{g}^{2}} \\
& \Rightarrow 2fgh=-abc+a{{f}^{2}}+b{{g}^{2}}+b{{g}^{2}} \\
& \Rightarrow abc+afgh-a{{f}^{2}}-b{{g}^{2}}-b{{g}^{2}}=0 \\
& \therefore \Delta =0 \\
\end{align}\]
Thus, the given equation represents pair of straight lines.
If ${{h}^{2}}=ab$, the angle between these two lines becomes zero. I.e.,
$\cos \theta =\dfrac{a+b}{\sqrt{{{(a-b)}^{2}}+4{{h}^{2}}}}$
Substituting ${{h}^{2}}=ab$ in the above angle, we get
$\begin{align}
& \cos \theta =\dfrac{a+b}{\sqrt{{{(a-b)}^{2}}+4(ab)}} \\
& \text{ }=\dfrac{a+b}{a+b} \\
& \text{ }=1 \\
& \Rightarrow \theta ={{\cos }^{-1}}(1)=0 \\
\end{align}$
Since the angle between them is zero, these two lines are parallel.
Option ‘A’ is correct
Note: To solve such a problem, we need to assume two lines and solve them in the above process to prove them to be a pair of parallel lines.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

