
If in a \[\Delta ABC\],\[\angle A = 45^\circ \],\[\angle C = 60^\circ \], then \[a + c\sqrt 2 \]
A. \[b\]
B. \[2b\]
C. \[\sqrt {2b} \]
D. \[\sqrt {3b} \]
Answer
232.8k+ views
Hint
In this case we are given the values of some angles of like \[\angle A = {45^\circ },\angle C = {60^\circ }\] and asked to determine the value of \[a + c\sqrt 2 \] and we will use the extended sine rule to determine the relationship between the length of the triangle's sides and its circumradius to obtain the desired result.
Formula used:
Sine rule formula:
\[\frac{a}{{sinA}} = \frac{b}{{sinB}} = \frac{c}{{sinC}} = 2R\]
Complete step-by-step solution:
The given angle is \[A = 45^\circ \], \[C = 60^\circ \]
\[A + B + C = \pi \]
By substituting the values on the equation, it becomes
\[ = > B = 75^\circ \]
\[a + c\sqrt 2 = k\sin A + k\sin C(\sqrt 2 )\]
\[ = 2k(\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }})\]
The values on the equation becomes,
\[ = 2k\sin 75^\circ \]
Then, the equation becomes
\[ = 2k\sin B\]
\[a + c\sqrt 2 = 2b\]
So, option B is correct.
Note
You need to first determine the lengths of ABC in order to solve this problem. The lengths of AB and BC are \[2\] and \[3\], respectively. As a result, dragging a downward will result in the intersection of AD and BC.
Two lines are said to intersect when they have exactly one point in common. There is a point at which the intersecting lines meet. The point of intersection is the same location that appears on all intersecting lines. There will be a place where the two coplanar, non-parallel straight lines intersect. Here, point O, the intersection point, is where lines A and B meet.
In this case we are given the values of some angles of like \[\angle A = {45^\circ },\angle C = {60^\circ }\] and asked to determine the value of \[a + c\sqrt 2 \] and we will use the extended sine rule to determine the relationship between the length of the triangle's sides and its circumradius to obtain the desired result.
Formula used:
Sine rule formula:
\[\frac{a}{{sinA}} = \frac{b}{{sinB}} = \frac{c}{{sinC}} = 2R\]
Complete step-by-step solution:
The given angle is \[A = 45^\circ \], \[C = 60^\circ \]
\[A + B + C = \pi \]
By substituting the values on the equation, it becomes
\[ = > B = 75^\circ \]
\[a + c\sqrt 2 = k\sin A + k\sin C(\sqrt 2 )\]
\[ = 2k(\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }})\]
The values on the equation becomes,
\[ = 2k\sin 75^\circ \]
Then, the equation becomes
\[ = 2k\sin B\]
\[a + c\sqrt 2 = 2b\]
So, option B is correct.
Note
You need to first determine the lengths of ABC in order to solve this problem. The lengths of AB and BC are \[2\] and \[3\], respectively. As a result, dragging a downward will result in the intersection of AD and BC.
Two lines are said to intersect when they have exactly one point in common. There is a point at which the intersecting lines meet. The point of intersection is the same location that appears on all intersecting lines. There will be a place where the two coplanar, non-parallel straight lines intersect. Here, point O, the intersection point, is where lines A and B meet.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

