If in a triangle \[{\rm{ABC}}\] side \[a = (\sqrt 3 + 1){\rm{cm}}\] and \[\angle B = {30^\circ }\],\[\angle C = {45^\circ }\] then the area of the triangle is
A. \[\frac{{\sqrt 3 + 1}}{3}\;{\rm{c}}{{\rm{m}}^2}\]
B. \[\frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
C. \[\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\;{\rm{c}}{{\rm{m}}^2}\]
D. \[\frac{{\sqrt 3 + 1}}{{3\sqrt 2 }}\;{\rm{c}}{{\rm{m}}^2}\]
Last updated date: 22nd Mar 2023
•
Total views: 36k
•
Views today: 0.14k
Answer
36k+ views
Hint:
In this case, we have been given that in a triangle ABC, the side is \[a = (\sqrt 3 + 1){\rm{cm}}\] and two angles \[\angle B = {30^\circ }\],\[\angle C = {45^\circ }\]and here we see that one of the angles is \[\angle C = {45^\circ }\]and the other is \[\angle B = {30^\circ }\]then it may be isosceles triangle. We know that all angle’s sum is \[{180^\circ }\] in a triangle. So that we have to apply sine rule and also to use area of triangle formula in order to get the required result.
Formula used:
Sine rule:
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Triangle’s area:
\[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
Complete step-by-step solution:
We have been provided in the question that in a triangle \[ABC\] we have
\[a = (\sqrt 3 + 1);\angle B = {30^\circ },\angle C = {45^\circ }\]
As we know by sum of angle property that triangle’s sum of angle is \[{180^0}\] we can write as
\[ \Rightarrow \angle {\rm{A}} = {180^\circ } - {75^\circ } = {105^\circ }\]
Now, we have to use sine rule
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Now, we have to substitute the values provided in the data to the above equation, we get
\[ \Rightarrow \frac{{\sqrt 3 + 1}}{{\sin {{105}^\circ }}} = \frac{{\rm{b}}}{{\sin {{30}^\circ }}} = \frac{{\rm{c}}}{{\sin {{45}^\circ }}}\]
From the above expression, we have to determine the value of \[{\rm{b}}\] we obtain
\[ \Rightarrow {\rm{b}} = \frac{{(\sqrt 3 + 1)\sin {{30}^\circ }}}{{\sin {{105}^\circ }}}\]
Now, let’s solve numerator and denominator by using trigonometry identity, we get
\[ \frac{{(\sqrt 3 + 1)}}{{2\sin \left( {{{45}^\circ } + {{60}^\circ }} \right)}}\]
On further simplification using trigonometry identity, we obtain
\[ = \sqrt 2 \]
We have been already known that the area of triangle is \[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
By using the above formula we have ti substitute the values obtain previously we get
\[ = \frac{1}{2}(\sqrt 3 + 1)(\sqrt 2 )\frac{1}{{\sqrt 2 }}\]
Now, we have to simplify further we obtain
\[ = \frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Therefore, if in a triangle \[{\rm{ABC}}\] side \[a = (\sqrt 3 + 1){\rm{cm}}\] and \[\angle B = {30^\circ },\angle C = {45^\circ }\] then the area of the triangle is \[\frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Hence, the option B is correct
Note:
It is important to remember that the sum of all the angles must equal 180. Also, keep in mind that the length of a triangle's sides is a positive number. To relate the length and angles of a triangle, the sine and cosine formulas must be used.
In this case, we have been given that in a triangle ABC, the side is \[a = (\sqrt 3 + 1){\rm{cm}}\] and two angles \[\angle B = {30^\circ }\],\[\angle C = {45^\circ }\]and here we see that one of the angles is \[\angle C = {45^\circ }\]and the other is \[\angle B = {30^\circ }\]then it may be isosceles triangle. We know that all angle’s sum is \[{180^\circ }\] in a triangle. So that we have to apply sine rule and also to use area of triangle formula in order to get the required result.
Formula used:
Sine rule:
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Triangle’s area:
\[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
Complete step-by-step solution:
We have been provided in the question that in a triangle \[ABC\] we have
\[a = (\sqrt 3 + 1);\angle B = {30^\circ },\angle C = {45^\circ }\]
As we know by sum of angle property that triangle’s sum of angle is \[{180^0}\] we can write as
\[ \Rightarrow \angle {\rm{A}} = {180^\circ } - {75^\circ } = {105^\circ }\]
Now, we have to use sine rule
\[\frac{{\rm{a}}}{{\sin {\rm{A}}}} = \frac{{\rm{b}}}{{\sin {\rm{B}}}} = \frac{{\rm{c}}}{{\sin {\rm{C}}}}\]
Now, we have to substitute the values provided in the data to the above equation, we get
\[ \Rightarrow \frac{{\sqrt 3 + 1}}{{\sin {{105}^\circ }}} = \frac{{\rm{b}}}{{\sin {{30}^\circ }}} = \frac{{\rm{c}}}{{\sin {{45}^\circ }}}\]
From the above expression, we have to determine the value of \[{\rm{b}}\] we obtain
\[ \Rightarrow {\rm{b}} = \frac{{(\sqrt 3 + 1)\sin {{30}^\circ }}}{{\sin {{105}^\circ }}}\]
Now, let’s solve numerator and denominator by using trigonometry identity, we get
\[ \frac{{(\sqrt 3 + 1)}}{{2\sin \left( {{{45}^\circ } + {{60}^\circ }} \right)}}\]
On further simplification using trigonometry identity, we obtain
\[ = \sqrt 2 \]
We have been already known that the area of triangle is \[\frac{1}{2}{\rm{ab}}\sin {\rm{C}}\]
By using the above formula we have ti substitute the values obtain previously we get
\[ = \frac{1}{2}(\sqrt 3 + 1)(\sqrt 2 )\frac{1}{{\sqrt 2 }}\]
Now, we have to simplify further we obtain
\[ = \frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Therefore, if in a triangle \[{\rm{ABC}}\] side \[a = (\sqrt 3 + 1){\rm{cm}}\] and \[\angle B = {30^\circ },\angle C = {45^\circ }\] then the area of the triangle is \[\frac{{\sqrt 3 + 1}}{2}\;{\rm{c}}{{\rm{m}}^2}\]
Hence, the option B is correct
Note:
It is important to remember that the sum of all the angles must equal 180. Also, keep in mind that the length of a triangle's sides is a positive number. To relate the length and angles of a triangle, the sine and cosine formulas must be used.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
