
If $g\left( x \right)=\int\limits_{\sin \left( x \right)}^{\sin \left( 2x \right)}{{{\sin }^{-1}}\left( t \right)dt}$ , then
(a) ${g}'\left( \dfrac{\pi }{2} \right)=-2\pi $
(b) ${g}'\left( -\dfrac{\pi }{2} \right)=-2\pi $
(c) ${g}'\left( -\dfrac{\pi }{2} \right)=2\pi $
(d) ${g}'\left( \dfrac{\pi }{2} \right)=2\pi $
This question can have multiple correct answers.
Answer
590.1k+ views
Hint: We will use the formula \[{f}'\left( x \right)=z\left( h\left( x \right) \right)\cdot {h}'\left( x \right)-z\left( g\left( x \right) \right)\cdot {g}'\left( x \right)\] for $f\left( x \right)=\int\limits_{g\left( x \right)}^{h\left( x \right)}{z\left( t \right)dt}$ to solve the integral given in the question. Then we will substitute the value of x by $\dfrac{\pi }{2}$ and $-\dfrac{\pi }{2}$ to find the correct answer (s) of the question.
Complete step-by-step answer:
We know for a function given in terms of an integral $f\left( x \right)=\int\limits_{g\left( x \right)}^{h\left( x \right)}{z\left( t \right)dt}$, its differentiation is given by \[{f}'\left( x \right)=z\left( h\left( x \right) \right)\cdot {h}'\left( x \right)-z\left( g\left( x \right) \right)\cdot {g}'\left( x \right)\]
We should recall the identity \[{{\sin }^{-1}}\left( \sin \theta \right)=\theta ,\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\text{ }\ldots \left( i \right)\]
Let us also recall a few values on trigonometric functions,
$\begin{align}
& \cos \left( \dfrac{-\pi }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)=0 \\
& \cos \left( -\pi \right)=\cos \left( -\pi \right)=-1 \\
& \sin \left( -\pi \right)=\sin \left( \pi \right)=0 \\
\end{align}$
We are given $g\left( x \right)=\int\limits_{\sin \left( x \right)}^{\sin \left( 2x \right)}{{{\sin }^{-1}}\left( t \right)dt}$
Then, differentiating both sides of the above equation, we get
\[\begin{align}
& {g}'\left( x \right)={{\sin }^{-1}}\left( \sin \left( 2x \right) \right)\cdot 2\cos \left( 2x \right)-{{\sin }^{-1}}\left( \sin \left( x \right) \right)\cdot \cos \left( x \right) \\
& =2x\cdot 2\cos \left( 2x \right)-x\cdot \cos \left( x \right)\text{ from }\left( i \right) \\
& {g}'\left( x \right)=4x\cos \left( 2x \right)-x\cos x\text{ }\ldots \left( ii \right)
\end{align}\]
Now putting the value of \[x=\dfrac{-\pi }{2}\] in equation (ii), we get
\[\begin{align}
& {g}'\left( \dfrac{-\pi }{2} \right)=4\left( \dfrac{-\pi }{2} \right)\cos \left( 2\dfrac{-\pi }{2} \right)-\dfrac{-\pi }{2}\cos \dfrac{-\pi }{2} \\
& =-2\pi \cos \left( -\pi \right)+\dfrac{\pi }{2}\cos \left( \dfrac{-\pi }{2} \right) \\
& =-2\pi \left( -1 \right)+0 \\
& {g}'\left( \dfrac{-\pi }{2} \right)=2\pi
\end{align}\]
Hence, the option (c) is correct.
Now putting the value of \[x=\dfrac{\pi }{2}\] in equation (ii), we get
\[\begin{align}
& {g}'\left( \dfrac{\pi }{2} \right)=4\left( \dfrac{\pi }{2} \right)\cos \left( 2\dfrac{\pi }{2} \right)-\dfrac{\pi }{2}\cos \dfrac{\pi }{2} \\
& =2\pi \cos \left( \pi \right)+\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right) \\
& =2\pi \left( -1 \right)+0 \\
& {g}'\left( \dfrac{\pi }{2} \right)=-2\pi
\end{align}\]
Hence, the option (a) is correct.
So, the correct answer is “Option A and C”.
Note: The value of \[{{\sin }^{-1}}\left( \sin \theta \right)=\theta ,\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] is the principal value of the identity. The question also doesn’t mention that the interval to be considered is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]. This was solved on the instinct by looking at the options wisely.
Here, we are assuming that the integral is to be solved only in the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]. However, if we took general values of the identity, then the values of \[{g}'\left( \dfrac{\pi }{2} \right)\] and \[{g}'\left( \dfrac{-\pi }{2} \right)\] would have been zero. Let us look at the differentiation of the given integral \[{g}'\left( x \right)={{\sin }^{-1}}\left( \sin \left( 2x \right) \right)\cdot 2\cos \left( 2x \right)-{{\sin }^{-1}}\left( \sin \left( x \right) \right)\cdot \cos \left( x \right)\].
Then, for \[x=\dfrac{-\pi }{2}\], we get \[\begin{align}
& {g}'\left( \dfrac{-\pi }{2} \right)={{\sin }^{-1}}\left( \sin \left( 2\dfrac{-\pi }{2} \right) \right)\cdot 2\cos \left( 2\dfrac{-\pi }{2} \right)-{{\sin }^{-1}}\left( \sin \left( \dfrac{-\pi }{2} \right) \right)\cdot \cos \left( \dfrac{-\pi }{2} \right) \\
& ={{\sin }^{-1}}\left( \sin \left( -\pi \right) \right)\cdot 2\cos \left( -\pi \right)-0 \\
& ={{\sin }^{-1}}0=0
\end{align}\]
And, for \[x=\dfrac{\pi }{2}\], we get \[\begin{align}
& {g}'\left( \dfrac{\pi }{2} \right)={{\sin }^{-1}}\left( \sin \left( 2\dfrac{\pi }{2} \right) \right)\cdot 2\cos \left( 2\dfrac{\pi }{2} \right)-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{2} \right) \right)\cdot \cos \left( \dfrac{\pi }{2} \right) \\
& ={{\sin }^{-1}}\left( \sin \left( \pi \right) \right)\cdot 2\cos \left( \pi \right)-0 \\
& ={{\sin }^{-1}}0=0
\end{align}\]
Hence, the actual general values of \[{g}'\left( \dfrac{\pi }{2} \right)\] and \[{g}'\left( \dfrac{-\pi }{2} \right)\] is zero.
But since the options mentioned other values, we found out the principal values of the function.
Complete step-by-step answer:
We know for a function given in terms of an integral $f\left( x \right)=\int\limits_{g\left( x \right)}^{h\left( x \right)}{z\left( t \right)dt}$, its differentiation is given by \[{f}'\left( x \right)=z\left( h\left( x \right) \right)\cdot {h}'\left( x \right)-z\left( g\left( x \right) \right)\cdot {g}'\left( x \right)\]
We should recall the identity \[{{\sin }^{-1}}\left( \sin \theta \right)=\theta ,\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\text{ }\ldots \left( i \right)\]
Let us also recall a few values on trigonometric functions,
$\begin{align}
& \cos \left( \dfrac{-\pi }{2} \right)=\cos \left( \dfrac{\pi }{2} \right)=0 \\
& \cos \left( -\pi \right)=\cos \left( -\pi \right)=-1 \\
& \sin \left( -\pi \right)=\sin \left( \pi \right)=0 \\
\end{align}$
We are given $g\left( x \right)=\int\limits_{\sin \left( x \right)}^{\sin \left( 2x \right)}{{{\sin }^{-1}}\left( t \right)dt}$
Then, differentiating both sides of the above equation, we get
\[\begin{align}
& {g}'\left( x \right)={{\sin }^{-1}}\left( \sin \left( 2x \right) \right)\cdot 2\cos \left( 2x \right)-{{\sin }^{-1}}\left( \sin \left( x \right) \right)\cdot \cos \left( x \right) \\
& =2x\cdot 2\cos \left( 2x \right)-x\cdot \cos \left( x \right)\text{ from }\left( i \right) \\
& {g}'\left( x \right)=4x\cos \left( 2x \right)-x\cos x\text{ }\ldots \left( ii \right)
\end{align}\]
Now putting the value of \[x=\dfrac{-\pi }{2}\] in equation (ii), we get
\[\begin{align}
& {g}'\left( \dfrac{-\pi }{2} \right)=4\left( \dfrac{-\pi }{2} \right)\cos \left( 2\dfrac{-\pi }{2} \right)-\dfrac{-\pi }{2}\cos \dfrac{-\pi }{2} \\
& =-2\pi \cos \left( -\pi \right)+\dfrac{\pi }{2}\cos \left( \dfrac{-\pi }{2} \right) \\
& =-2\pi \left( -1 \right)+0 \\
& {g}'\left( \dfrac{-\pi }{2} \right)=2\pi
\end{align}\]
Hence, the option (c) is correct.
Now putting the value of \[x=\dfrac{\pi }{2}\] in equation (ii), we get
\[\begin{align}
& {g}'\left( \dfrac{\pi }{2} \right)=4\left( \dfrac{\pi }{2} \right)\cos \left( 2\dfrac{\pi }{2} \right)-\dfrac{\pi }{2}\cos \dfrac{\pi }{2} \\
& =2\pi \cos \left( \pi \right)+\dfrac{\pi }{2}\cos \left( \dfrac{\pi }{2} \right) \\
& =2\pi \left( -1 \right)+0 \\
& {g}'\left( \dfrac{\pi }{2} \right)=-2\pi
\end{align}\]
Hence, the option (a) is correct.
So, the correct answer is “Option A and C”.
Note: The value of \[{{\sin }^{-1}}\left( \sin \theta \right)=\theta ,\theta \in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] is the principal value of the identity. The question also doesn’t mention that the interval to be considered is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]. This was solved on the instinct by looking at the options wisely.
Here, we are assuming that the integral is to be solved only in the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]. However, if we took general values of the identity, then the values of \[{g}'\left( \dfrac{\pi }{2} \right)\] and \[{g}'\left( \dfrac{-\pi }{2} \right)\] would have been zero. Let us look at the differentiation of the given integral \[{g}'\left( x \right)={{\sin }^{-1}}\left( \sin \left( 2x \right) \right)\cdot 2\cos \left( 2x \right)-{{\sin }^{-1}}\left( \sin \left( x \right) \right)\cdot \cos \left( x \right)\].
Then, for \[x=\dfrac{-\pi }{2}\], we get \[\begin{align}
& {g}'\left( \dfrac{-\pi }{2} \right)={{\sin }^{-1}}\left( \sin \left( 2\dfrac{-\pi }{2} \right) \right)\cdot 2\cos \left( 2\dfrac{-\pi }{2} \right)-{{\sin }^{-1}}\left( \sin \left( \dfrac{-\pi }{2} \right) \right)\cdot \cos \left( \dfrac{-\pi }{2} \right) \\
& ={{\sin }^{-1}}\left( \sin \left( -\pi \right) \right)\cdot 2\cos \left( -\pi \right)-0 \\
& ={{\sin }^{-1}}0=0
\end{align}\]
And, for \[x=\dfrac{\pi }{2}\], we get \[\begin{align}
& {g}'\left( \dfrac{\pi }{2} \right)={{\sin }^{-1}}\left( \sin \left( 2\dfrac{\pi }{2} \right) \right)\cdot 2\cos \left( 2\dfrac{\pi }{2} \right)-{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{2} \right) \right)\cdot \cos \left( \dfrac{\pi }{2} \right) \\
& ={{\sin }^{-1}}\left( \sin \left( \pi \right) \right)\cdot 2\cos \left( \pi \right)-0 \\
& ={{\sin }^{-1}}0=0
\end{align}\]
Hence, the actual general values of \[{g}'\left( \dfrac{\pi }{2} \right)\] and \[{g}'\left( \dfrac{-\pi }{2} \right)\] is zero.
But since the options mentioned other values, we found out the principal values of the function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

