
.If \[f:R \to R\]and \[g:R \to R\]are given by \[f(x) = \left| x \right|\]and \[g(x) = \left[ x \right]\]for each \[x \in R\], then \[\{ x \in R:g(f(x)) \le f(g(x))\} \]=
A) \[Z \cup ( - \infty ,0)\]
B) \[x = \dfrac{9}{2}\]
C) Z
D) R
Answer
233.1k+ views
Hint: Here are two function f which is mapping from real number to real number and g which is also mapping from real number to real number. We have to relate the function f to g and then g to f. then we will get the relation of \[g[f(x)]\] to \[f[g(x)]\].
Formula Used:For every \[x \in R\]
If \[f(x) = x\], \[g(x) = x'\]
\[f[g(x)] = f(x')\]
=\[x'\]
Also \[\forall x \in R\], \[\left[ { - x} \right]\]=\[ - x\]
\[\left| x \right| = x\]
Complete step by step solution:Given \[f:R \to R\]and \[g:R \to R\]
\[f(x) = \left| x \right|\]and \[g(x) = \left[ x \right]\], \[\forall x \in R\]
Now given \[g[f(x)] \le f[g(x)]\]
\[g(\left| x \right|) \le f(\left[ x \right])\]
\[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Here now two cases arises,
Case (1): \[x = ( - \infty ,0)\]
Put \[x = \dfrac{{ - 9}}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\dfrac{9}{2}} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
Also, \[\left| {\left[ x \right]} \right| = \left[ {\dfrac{{ - 9}}{2}} \right]\]
\[\left| {\left[ x \right]} \right| = \left| { - 5} \right|\]
=5
Thus \[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Case (2): \[x = (0, + \infty )\]
\[x = \dfrac{9}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\left| {\dfrac{9}{2}} \right|} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
\[\left| {\left[ x \right]} \right| = \left| {\dfrac{9}{2}} \right|\]
=4
Thus \[\left[ {\left| x \right|} \right] = \left| {\left[ x \right]} \right|\]
Hence we can see that this function\[g[f(x)] \le f[g(x)]\]is true for all the value of real number.
Option ‘D’ is correct
Note:Student must remember when the closed interval function of \[\left[ x \right]\]is negative then its value is negative and when mod of function \[\left| x \right|\]is negative then its value is positive.
Formula Used:For every \[x \in R\]
If \[f(x) = x\], \[g(x) = x'\]
\[f[g(x)] = f(x')\]
=\[x'\]
Also \[\forall x \in R\], \[\left[ { - x} \right]\]=\[ - x\]
\[\left| x \right| = x\]
Complete step by step solution:Given \[f:R \to R\]and \[g:R \to R\]
\[f(x) = \left| x \right|\]and \[g(x) = \left[ x \right]\], \[\forall x \in R\]
Now given \[g[f(x)] \le f[g(x)]\]
\[g(\left| x \right|) \le f(\left[ x \right])\]
\[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Here now two cases arises,
Case (1): \[x = ( - \infty ,0)\]
Put \[x = \dfrac{{ - 9}}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\dfrac{9}{2}} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
Also, \[\left| {\left[ x \right]} \right| = \left[ {\dfrac{{ - 9}}{2}} \right]\]
\[\left| {\left[ x \right]} \right| = \left| { - 5} \right|\]
=5
Thus \[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Case (2): \[x = (0, + \infty )\]
\[x = \dfrac{9}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\left| {\dfrac{9}{2}} \right|} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
\[\left| {\left[ x \right]} \right| = \left| {\dfrac{9}{2}} \right|\]
=4
Thus \[\left[ {\left| x \right|} \right] = \left| {\left[ x \right]} \right|\]
Hence we can see that this function\[g[f(x)] \le f[g(x)]\]is true for all the value of real number.
Option ‘D’ is correct
Note:Student must remember when the closed interval function of \[\left[ x \right]\]is negative then its value is negative and when mod of function \[\left| x \right|\]is negative then its value is positive.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

