
If $f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$ then $f'\left( 1 \right)$ is
1. $0$
2. $ - 2$
3. $\dfrac{1}{{\sqrt 3 }}$
4. $\sqrt 3 $
Answer
232.8k+ views
Hint: Here, start solving the given function by using logarithm formulas to open the first term of function use ${\log _a}b = \dfrac{{\log b}}{{\log a}}$ and $\log \left( {\dfrac{1}{a}} \right) = - \log a$ solve further and to solve the ${\tan ^{ - 1}}$ term put $x = 2\sin \theta $. Lastly, differentiate the required term with respect to $x$ and find $f'\left( 1 \right)$ at $x = 1$.
Formula used:
Logarithm formula –
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log \left( {\dfrac{1}{a}} \right) = - \log a$
Derivative of inverse –
$\dfrac{d}{{dx}}{\sin ^{ - 1}}\theta = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Complete step by step solution:
Given that,
$f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}}{\left( {\dfrac{{\log \cot x}}{{\log \tan x}}} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}} \times \dfrac{{\log \tan x}}{{\log \cot x}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} \times \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} \times \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
Put $x = 2\sin \theta \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{x}{2}$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\tan \theta } \right)$
$ = 1 + \theta $
$ = 1 + {\sin ^{ - 1}}\dfrac{x}{2} - - - - - (1)$
Differentiate equation (1) with respect to $x$
$f'(x) = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }} \times \dfrac{1}{2}$
$ = \dfrac{1}{{\sqrt {4 - {x^2}} }}$
At $x = 1$
$f'\left( 1 \right) = \dfrac{1}{{\sqrt {4 - {{\left( 1 \right)}^2}} }} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow $ Option (3) is the correct answer.
Note: In such questions, to solve the inverse term let $x$ be the trigonometric function so that the inverse will cancel, and it will be easier to find the derivative If you want to solve with the inverse only go ahead it will just make the calculation lengthy only. Also, while finding the derivative of the expression like $f(g(x))$always apply chain rule. First derive the whole function and then derive the function which is inside the original one.
Formula used:
Logarithm formula –
${\log _a}b = \dfrac{{\log b}}{{\log a}}$
$\log \left( {\dfrac{1}{a}} \right) = - \log a$
Derivative of inverse –
$\dfrac{d}{{dx}}{\sin ^{ - 1}}\theta = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Complete step by step solution:
Given that,
$f\left( x \right) = \left( {{{\log }_{\cot x}}\tan x} \right){\left( {{{\log }_{\tan x}}\cot x} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}}{\left( {\dfrac{{\log \cot x}}{{\log \tan x}}} \right)^{ - 1}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \cot x}} \times \dfrac{{\log \tan x}}{{\log \cot x}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} \times \dfrac{{\log \tan x}}{{\log \left( {\dfrac{1}{{\tan x}}} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} \times \dfrac{{\log \tan x}}{{\left( { - \log \tan x} \right)}} + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{x}{{\sqrt {4 - {x^2}} }}} \right)$
Put $x = 2\sin \theta \Rightarrow \theta = {\sin ^{ - 1}}\dfrac{x}{2}$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\dfrac{{2\sin \theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \right)$
$ = 1 + {\tan ^{ - 1}}\left( {\tan \theta } \right)$
$ = 1 + \theta $
$ = 1 + {\sin ^{ - 1}}\dfrac{x}{2} - - - - - (1)$
Differentiate equation (1) with respect to $x$
$f'(x) = \dfrac{1}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }} \times \dfrac{1}{2}$
$ = \dfrac{1}{{\sqrt {4 - {x^2}} }}$
At $x = 1$
$f'\left( 1 \right) = \dfrac{1}{{\sqrt {4 - {{\left( 1 \right)}^2}} }} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow $ Option (3) is the correct answer.
Note: In such questions, to solve the inverse term let $x$ be the trigonometric function so that the inverse will cancel, and it will be easier to find the derivative If you want to solve with the inverse only go ahead it will just make the calculation lengthy only. Also, while finding the derivative of the expression like $f(g(x))$always apply chain rule. First derive the whole function and then derive the function which is inside the original one.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

