
If \[f\left( x \right)\] is an odd function of \[x\], then what is the value of \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]?
A. 0
B. \[\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
C. \[2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
D. \[\int\limits_0^\pi {f\left( {\cos x} \right)} dx\]
Answer
233.1k+ views
Hint: Here, a definite integral is given. First, check whether the given function \[f\left( {\cos x} \right)\] is an even function or an odd function. If the function is odd, then apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)} dx = 0\]. If the function is even, then apply the integration property \[\int\limits_{ - a}^a {f\left( x \right)} dx = 2\int\limits_0^a {f\left( x \right)} dx\] and then solve the integral by applying the integration property \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]. In the end, apply the trigonometric property \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\] and simplify the integral to get the required answer.
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:Given:
The definite integral is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\], where\[f\left( x \right)\] is an odd function of \[x\].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Now let’s check whether the function \[f\left( {\cos x} \right)\] is an odd function or an even function.
Let consider,
\[g\left( x \right) = f\left( {\cos x} \right)\]
Now calculate the value of \[g\left( { - x} \right)\]
\[g\left( { - x} \right) = f\left( {\cos \left( { - x} \right)} \right)\]
\[ \Rightarrow g\left( { - x} \right) = f\left( {\cos x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = g\left( x \right)\]
Thus, the function \[g\left( x \right) = f\left( {\cos x} \right)\] is an even function.
So, apply the integration rule \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Again, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos \left( {\dfrac{\pi }{2} - x} \right)} \right)} dx\]
Apply the trigonometric property \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Thus, \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Option ‘C’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Formula Used:\[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 0\], if the function \[f\left( x \right)\] is an odd function. Means, \[f\left( { - x} \right) = - f\left( x \right)\]
\[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function. Means, \[f\left( { - x} \right) = f\left( x \right)\]
Complete step by step solution:Given:
The definite integral is \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\], where\[f\left( x \right)\] is an odd function of \[x\].
Let consider,
\[I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Now let’s check whether the function \[f\left( {\cos x} \right)\] is an odd function or an even function.
Let consider,
\[g\left( x \right) = f\left( {\cos x} \right)\]
Now calculate the value of \[g\left( { - x} \right)\]
\[g\left( { - x} \right) = f\left( {\cos \left( { - x} \right)} \right)\]
\[ \Rightarrow g\left( { - x} \right) = f\left( {\cos x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = g\left( x \right)\]
Thus, the function \[g\left( x \right) = f\left( {\cos x} \right)\] is an even function.
So, apply the integration rule \[\int\limits_{ - a}^a {f\left( x \right) dx} = 2\int\limits_0^a {f\left( x \right) dx} \], if the function \[f\left( x \right)\] is an even function.
We get,
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx\]
Again, apply the integration rule \[\int\limits_0^a {f\left( x \right)} dx = \int\limits_0^a {f\left( {a - x} \right)} dx\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\cos \left( {\dfrac{\pi }{2} - x} \right)} \right)} dx\]
Apply the trigonometric property \[\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x\].
\[I = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\]
Thus, \[\int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {f\left( {\cos x} \right)} dx = 2\int\limits_0^{\dfrac{\pi }{2}} {f\left( {\sin x} \right)} dx\].
Option ‘C’ is correct
Note: Sometimes students get confused about the exponent rule of the trigonometric ratios.
The formulas are as follows:
\[{\cos ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\sin ^n}\theta \]
\[{\sin ^n}\left( {\dfrac{\pi }{2} - \theta } \right) = {\cos ^n}\theta \]
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

