
If $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$ are in AP, then $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = $
A) $2$
B) $4$
C) $0$
D) $1$
Answer
232.8k+ views
Hint: In the given question we use the concept of Arithmetic Progression. Here, we will use the common difference formula to find the terms of the final expressions that are to be found. To do so equate the common difference between ${1^{st}}$ and ${2^{nd}}$ terms with ${2^{nd}}$ and ${3^{rd}}$ terms. Then add and subtract $a$ and $b$ from both the sides of equation one by one to get the values of $\left( {H + a} \right)$ , $\left( {H - a} \right)$, $\left( {H + b} \right)$ and $\left( {H - b} \right)$ respectively and substitute in the final expression to get the answer.
Complete step by step Solution:
Given AP: $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$
Common difference: $\dfrac{1}{H} - \dfrac{1}{a} = \dfrac{1}{b} - \dfrac{1}{H}$
$\dfrac{2}{H} = \dfrac{1}{a} + \dfrac{1}{b}$
Taking LCM on the right side of the equation, we get
$\dfrac{2}{H} = \dfrac{{a + b}}{{ab}}$
Inverting the equations, we get
$\dfrac{H}{2} = \dfrac{{ab}}{{a + b}}$
$H = \dfrac{{2ab}}{{a + b}}$ ...(1)
Adding $a$ to both the sides of the equation (1), we get
$H + a = \dfrac{{2ab}}{{a + b}} + a$
$H + a = \dfrac{{2ab + a\left( {a + b} \right)}}{{a + b}}$
Taking $a$ common from the numerator, we get
$H + a = \dfrac{{a(a + 3b)}}{{a + b}}$ ...(2)
Subtracting $a$ from both sides of the equation (1), we get
$H - a = \dfrac{{2ab}}{{a + b}} - a$
$H - a = \dfrac{{2ab - a\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - a = \dfrac{{a(b - a)}}{{a + b}}$ ...(3)
Similarly, by adding $b$ to both sides of the equation (1), we get
$H + b = \dfrac{{2ab}}{{a + b}} + b$
$H + b = \dfrac{{2ab + b\left( {a + b} \right)}}{{a + b}}$
Taking $b$ common from the numerator, we get
$H + b = \dfrac{{b(3a + b)}}{{a + b}}$ ...(4)
Now subtracting $b$ from both sides of the equation (1), we get
$H - b = \dfrac{{2ab}}{{a + b}} - b$
$H - b = \dfrac{{2ab - b\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - b = \dfrac{{b(a - b)}}{{a + b}}$ ...(5)
Now we substitute equations (2), (3), (4), and (5) in equation (1), and we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{\dfrac{{a(a + 3b)}}{{a + b}}}}{{\dfrac{{a(b - a)}}{{a + b}}}} + \dfrac{{\dfrac{{b(3a + b)}}{{a + b}}}}{{\dfrac{{b(a - b)}}{{a + b}}}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} + \dfrac{{(3a + b)}}{{(a - b)}}$
Taking a negative sign out from the denominator of the second term, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} - \dfrac{{(3a + b)}}{{(b - a)}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{a + 3b - 3a - b}}{{(b - a)}}$
Solving further, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2b - 2a}}{{(b - a)}}$
Taking 2 commons from the numerator of the right-hand side of the equation, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2(b - a)}}{{(b - a)}}$
Thus we get, $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = 2$
Therefore, the correct option is A.
Note:More such questions can be given in Geometric Progression too where the formula of common difference is not the same as that of Arithmetic Progression. Common Difference for Geometric Progression (GP) $x,y,z$ is $\dfrac{y}{x}$ or $\dfrac{z}{y}$ i.e., $\dfrac{{{n^{th}}term}}{{{{(n + 1)}^{th}}term}}$ .
Complete step by step Solution:
Given AP: $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$
Common difference: $\dfrac{1}{H} - \dfrac{1}{a} = \dfrac{1}{b} - \dfrac{1}{H}$
$\dfrac{2}{H} = \dfrac{1}{a} + \dfrac{1}{b}$
Taking LCM on the right side of the equation, we get
$\dfrac{2}{H} = \dfrac{{a + b}}{{ab}}$
Inverting the equations, we get
$\dfrac{H}{2} = \dfrac{{ab}}{{a + b}}$
$H = \dfrac{{2ab}}{{a + b}}$ ...(1)
Adding $a$ to both the sides of the equation (1), we get
$H + a = \dfrac{{2ab}}{{a + b}} + a$
$H + a = \dfrac{{2ab + a\left( {a + b} \right)}}{{a + b}}$
Taking $a$ common from the numerator, we get
$H + a = \dfrac{{a(a + 3b)}}{{a + b}}$ ...(2)
Subtracting $a$ from both sides of the equation (1), we get
$H - a = \dfrac{{2ab}}{{a + b}} - a$
$H - a = \dfrac{{2ab - a\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - a = \dfrac{{a(b - a)}}{{a + b}}$ ...(3)
Similarly, by adding $b$ to both sides of the equation (1), we get
$H + b = \dfrac{{2ab}}{{a + b}} + b$
$H + b = \dfrac{{2ab + b\left( {a + b} \right)}}{{a + b}}$
Taking $b$ common from the numerator, we get
$H + b = \dfrac{{b(3a + b)}}{{a + b}}$ ...(4)
Now subtracting $b$ from both sides of the equation (1), we get
$H - b = \dfrac{{2ab}}{{a + b}} - b$
$H - b = \dfrac{{2ab - b\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - b = \dfrac{{b(a - b)}}{{a + b}}$ ...(5)
Now we substitute equations (2), (3), (4), and (5) in equation (1), and we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{\dfrac{{a(a + 3b)}}{{a + b}}}}{{\dfrac{{a(b - a)}}{{a + b}}}} + \dfrac{{\dfrac{{b(3a + b)}}{{a + b}}}}{{\dfrac{{b(a - b)}}{{a + b}}}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} + \dfrac{{(3a + b)}}{{(a - b)}}$
Taking a negative sign out from the denominator of the second term, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} - \dfrac{{(3a + b)}}{{(b - a)}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{a + 3b - 3a - b}}{{(b - a)}}$
Solving further, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2b - 2a}}{{(b - a)}}$
Taking 2 commons from the numerator of the right-hand side of the equation, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2(b - a)}}{{(b - a)}}$
Thus we get, $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = 2$
Therefore, the correct option is A.
Note:More such questions can be given in Geometric Progression too where the formula of common difference is not the same as that of Arithmetic Progression. Common Difference for Geometric Progression (GP) $x,y,z$ is $\dfrac{y}{x}$ or $\dfrac{z}{y}$ i.e., $\dfrac{{{n^{th}}term}}{{{{(n + 1)}^{th}}term}}$ .
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

