
If \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] , then find the value of \[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty \] .
A. \[\dfrac{{{\pi ^4}}}{{96}}\]
B. \[\dfrac{{{\pi ^4}}}{{45}}\]
C. \[\dfrac{{89{\pi ^4}}}{{90}}\]
D. None of these
Answer
232.8k+ views
Hint:First we will separate the terms such that the denominator is 4 rise of odd numbers and even numbers. Then simplify the 4 rises of even numbers and calculate the value of the given expression.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Complete step by step solution:
Given equation
\[\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}}\] ……………(1)
Simplifying the given equation by separating even and odd numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{4^4}}} + \dfrac{1}{{{6^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}} + \dfrac{1}{{{{\left( {2 \times 2} \right)}^4}}} + \dfrac{1}{{{{\left( {3 \times 2} \right)}^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Taking common \[\dfrac{1}{{{2^4}}}\] from even numbers and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{2^4}}} + \dfrac{1}{{{3^4}}} + ...\infty } \right) = \dfrac{{{\pi ^4}}}{{90}}\]……………..(2)
Substituting the value of the second term of equation (2) from equation (1), we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{1}{{{2^4}}}} \right)\left( {\dfrac{{{\pi ^4}}}{{90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
Simplifying the expression and we get
\[ \Rightarrow \left( {\dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty } \right) + \left( {\dfrac{{{\pi ^4}}}{{{2^4} \times 90}}} \right) = \dfrac{{{\pi ^4}}}{{90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{90}} - \dfrac{{{\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{2^4}{\pi ^4} - {\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {{2^4} - 1} \right){\pi ^4}}}{{{2^4} \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{\left( {16 - 1} \right){\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{15 \times {\pi ^4}}}{{16 \times 90}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{16 \times 6}}\]
\[ \Rightarrow \dfrac{1}{{{1^4}}} + \dfrac{1}{{{3^4}}} + \dfrac{1}{{{5^4}}} + ...\infty = \dfrac{{{\pi ^4}}}{{96}}\]
Hence, the correct option is option A.
Additional information:
Definition of infinite series: The total of infinitely many numbers connected in a specific way and listed in a specific order is known as an infinite series. In mathematics as well as in fields like physics, chemistry, and biology, infinite series is helpful.
Note:To solve infinite series you need to use the substitution method. In this question, you need to write the equation as a sum of a fraction whose denominator is 4 rises of odd numbers and whose denominator is 4 rises. Then take out the common factor from the sum whose denominator is 4 rises of even numbers and substitute the value of the given expression. After simplifying we can get the required value.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

