If [ ] denotes the greatest integer function then the integral \[\int\limits_{0}^{\pi }{\left[ \cos x \right]dx}\] is equal to
[a] $\dfrac{\pi }{2}$
[b] 0
[c] -1
[d] $-\dfrac{\pi }{2}$
Last updated date: 19th Mar 2023
•
Total views: 303.6k
•
Views today: 3.82k
Answer
303.6k+ views
Hint: Use the property that if x is not an integer then [x]+[-x] = -1. Use the property of definite integrals $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}$.
Complete step-by-step solution -
We will solve the above question using the properties of G.I.F function and definite integrals.
Let $I=\int\limits_{0}^{\pi }{\left[ \cos x \right]dx}\text{ (i)}$
We know that $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}$.
Using the above formula, we get
$I=\int\limits_{0}^{\pi }{\left[ \cos \left( \pi +0-x \right) \right]dx}\text{ }$
$\Rightarrow I=\int\limits_{0}^{\pi }{\left[ \cos \left( \pi -x \right) \right]dx}$
We know $\cos \left( \pi -x \right)=-\cos x$
Substituting in the value of I we get
$I=\int\limits_{0}^{\pi }{\left[ -\cos x \right]dx}\text{ (ii)}$
Adding equation (i) and (ii) we get
$2I=\int\limits_{0}^{\pi }{\left( \left[ \cos x \right]+\left[ -\cos x \right] \right)dx}$
We know $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{c}{f(x)dx+\int\limits_{c}^{b}{f(x)dx}}}$
Taking $c=\dfrac{\pi }{2}$in the above formula and using in I we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \left[ \cos x \right]+\left[ -\cos x \right] \right)dx}+\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \left[ \cos x \right]+\left[ -\cos x \right] \right)dx}$
Since in the interval $\left( 0,\pi \right)$$\cos x$takes an integral value at $\dfrac{\pi }{2}$ only we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{-1dx}+\int\limits_{\dfrac{\pi }{2}}^{\pi }{-1dx}$
Integrating we get
$\Rightarrow 2I=\left. -x \right|_{0}^{\dfrac{\pi }{2}}+\left. -x \right|_{\dfrac{\pi }{2}}^{\pi }$
Substituting proper limits
$\begin{align}
& \Rightarrow 2I=-\dfrac{\pi }{2}-0+\left( -\pi -\left( \dfrac{-\pi }{2} \right) \right) \\
& \Rightarrow 2I=\dfrac{-\pi }{2}-\pi +\dfrac{\pi }{2} \\
& \Rightarrow 2I=-\pi \\
& \Rightarrow I=\dfrac{-\pi }{2} \\
\end{align}$
Option (d) is correct
Note: [1] We can also solve this question by plotting the graph of $\cos x$
As is evident from the graph $0<\cos x<1$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$ and $-1<\cos x<0$ in the interval $\left( \dfrac{\pi }{2},\pi \right)$.
Hence $\left[ \cos x \right]=0$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$and $\left[ \cos x \right]=-1$ in the interval $\left( \dfrac{\pi }{2},\pi \right)$
Hence total area under $\left[ \cos x \right]$ in the interval \[\left( 0,\pi \right)=0\times \dfrac{\pi }{2}+\left( -1 \right)\dfrac{\pi }{2}=\dfrac{-\pi }{2}\].
Hence the value of the definite integral = $\dfrac{-\pi }{2}$.
[2] Sometimes solving questions using graphs makes the question very easy in definite integrals.
[3] Some identities of [x] to remember
[a] $[x]+[-x]=\left[ \begin{matrix}
0\text{ if }x\in I \\
-1\text{ if }x\notin I \\
\end{matrix} \right.$
[b] $[x+a]=[x]+a\ \text{if }a\in I$
[c] power of prime in n! = $\sum\limits_{r=1}^{\infty }{\left[ \dfrac{n}{{{p}^{r}}} \right]}$
[d] $\left[ nx \right]\ne n\left[ x \right]$ in general
[e] $x-[x]$ is called fractional part of x and is denoted by $\left\{ x \right\}$
[f] $[x]\le x$
[4] Some properties of definite integrals to remember
[a] $\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}$
[b] $\int\limits_{a}^{b}{f(x)dx}=-\int\limits_{b}^{a}{f(x)dx}$
[c] $\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(a+b-x)dx}$
[d] $\int\limits_{-a}^{a}{f(x)}=\int\limits_{0}^{a}{\left( f(x)+f(-x) \right)dx}$
Complete step-by-step solution -
We will solve the above question using the properties of G.I.F function and definite integrals.
Let $I=\int\limits_{0}^{\pi }{\left[ \cos x \right]dx}\text{ (i)}$
We know that $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{b}{f(a+b-x)dx}}$.
Using the above formula, we get
$I=\int\limits_{0}^{\pi }{\left[ \cos \left( \pi +0-x \right) \right]dx}\text{ }$
$\Rightarrow I=\int\limits_{0}^{\pi }{\left[ \cos \left( \pi -x \right) \right]dx}$
We know $\cos \left( \pi -x \right)=-\cos x$
Substituting in the value of I we get
$I=\int\limits_{0}^{\pi }{\left[ -\cos x \right]dx}\text{ (ii)}$
Adding equation (i) and (ii) we get
$2I=\int\limits_{0}^{\pi }{\left( \left[ \cos x \right]+\left[ -\cos x \right] \right)dx}$
We know $\int\limits_{a}^{b}{f(x)dx=\int\limits_{a}^{c}{f(x)dx+\int\limits_{c}^{b}{f(x)dx}}}$
Taking $c=\dfrac{\pi }{2}$in the above formula and using in I we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \left[ \cos x \right]+\left[ -\cos x \right] \right)dx}+\int\limits_{\dfrac{\pi }{2}}^{\pi }{\left( \left[ \cos x \right]+\left[ -\cos x \right] \right)dx}$
Since in the interval $\left( 0,\pi \right)$$\cos x$takes an integral value at $\dfrac{\pi }{2}$ only we get
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{-1dx}+\int\limits_{\dfrac{\pi }{2}}^{\pi }{-1dx}$
Integrating we get
$\Rightarrow 2I=\left. -x \right|_{0}^{\dfrac{\pi }{2}}+\left. -x \right|_{\dfrac{\pi }{2}}^{\pi }$
Substituting proper limits
$\begin{align}
& \Rightarrow 2I=-\dfrac{\pi }{2}-0+\left( -\pi -\left( \dfrac{-\pi }{2} \right) \right) \\
& \Rightarrow 2I=\dfrac{-\pi }{2}-\pi +\dfrac{\pi }{2} \\
& \Rightarrow 2I=-\pi \\
& \Rightarrow I=\dfrac{-\pi }{2} \\
\end{align}$
Option (d) is correct
Note: [1] We can also solve this question by plotting the graph of $\cos x$

As is evident from the graph $0<\cos x<1$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$ and $-1<\cos x<0$ in the interval $\left( \dfrac{\pi }{2},\pi \right)$.
Hence $\left[ \cos x \right]=0$ in the interval $\left( 0,\dfrac{\pi }{2} \right)$and $\left[ \cos x \right]=-1$ in the interval $\left( \dfrac{\pi }{2},\pi \right)$
Hence total area under $\left[ \cos x \right]$ in the interval \[\left( 0,\pi \right)=0\times \dfrac{\pi }{2}+\left( -1 \right)\dfrac{\pi }{2}=\dfrac{-\pi }{2}\].
Hence the value of the definite integral = $\dfrac{-\pi }{2}$.
[2] Sometimes solving questions using graphs makes the question very easy in definite integrals.
[3] Some identities of [x] to remember
[a] $[x]+[-x]=\left[ \begin{matrix}
0\text{ if }x\in I \\
-1\text{ if }x\notin I \\
\end{matrix} \right.$
[b] $[x+a]=[x]+a\ \text{if }a\in I$
[c] power of prime in n! = $\sum\limits_{r=1}^{\infty }{\left[ \dfrac{n}{{{p}^{r}}} \right]}$
[d] $\left[ nx \right]\ne n\left[ x \right]$ in general
[e] $x-[x]$ is called fractional part of x and is denoted by $\left\{ x \right\}$
[f] $[x]\le x$
[4] Some properties of definite integrals to remember
[a] $\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}$
[b] $\int\limits_{a}^{b}{f(x)dx}=-\int\limits_{b}^{a}{f(x)dx}$
[c] $\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(a+b-x)dx}$
[d] $\int\limits_{-a}^{a}{f(x)}=\int\limits_{0}^{a}{\left( f(x)+f(-x) \right)dx}$
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
