
If $\cot \theta = \dfrac{7}{8}$, evaluate
1. $\dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}}$
2. ${\cot ^2}\theta $
Answer
521.1k+ views
Hint: Here we have to use the formulae of trigonometric ratio and pythagoras theorem to find the hypotenuse.
“Complete step-by-step answer:”
Given, $\cot \theta = \dfrac{7}{8}$
We know that by trigonometric ratio that $\cot \theta = \dfrac{b}{p}$where (b=base, p=perpendicular)
$ \Rightarrow \cot \theta = \dfrac{7}{8}{\text{ = }}\dfrac{{\text{b}}}{{\text{p}}}(\therefore p = 8,b = 7)$
Now from Pythagoras theorem we find h=Hypotenuse,
$
\therefore {h^2} = {p^2} + {b^2} \\
\Rightarrow {h^2} = {8^2} + {7^2} \\
\Rightarrow h = \sqrt {64 + 49} \\
\Rightarrow h = \sqrt {113} \\
$
And now we know that by trigonometric ratio,
$
\sin \theta = \dfrac{p}{h} = \dfrac{8}{{\sqrt {113} }} \\
\cos \theta = \dfrac{b}{h} = \dfrac{7}{{\sqrt {113} }} \\
$
For (i)
$\dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}}$
We have ${a^2} - {b^2} = (a + b)(a - b)$
Similarly,
$
1 - {\sin ^2}\theta = (1 + \sin \theta )(1 - \sin \theta ) \\
1 - {\cos ^2}\theta = (1 + \cos \theta )(1 - \cos \theta ) \\
$
$ \Rightarrow \dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}} = \dfrac{{1 - {{\sin }^2}\theta }}{{1 - {{\cos }^2}\theta }} = \dfrac{{1 - {{\left( {\dfrac{8}{{\sqrt {113} }}} \right)}^2}}}{{1 - {{\left( {\dfrac{7}{{\sqrt {113} }}} \right)}^2}}} = \dfrac{{(113 - 64)}}{{(113 - 49)}} = \dfrac{{49}}{{64}}$
For (ii)
Given,
$\cot \theta = \dfrac{7}{8}$
We have to find ${\cot ^2}\theta $
${\cot ^2}\theta = {(\cot \theta )^2} = {\left( {\dfrac{7}{8}} \right)^2} = \dfrac{{49}}{{64}}$
Note: Whenever such type of questions are given we can solve it by two way (i) trigonometric ratio (ii) by trigonometric identities
“Complete step-by-step answer:”
Given, $\cot \theta = \dfrac{7}{8}$
We know that by trigonometric ratio that $\cot \theta = \dfrac{b}{p}$where (b=base, p=perpendicular)
$ \Rightarrow \cot \theta = \dfrac{7}{8}{\text{ = }}\dfrac{{\text{b}}}{{\text{p}}}(\therefore p = 8,b = 7)$
Now from Pythagoras theorem we find h=Hypotenuse,
$
\therefore {h^2} = {p^2} + {b^2} \\
\Rightarrow {h^2} = {8^2} + {7^2} \\
\Rightarrow h = \sqrt {64 + 49} \\
\Rightarrow h = \sqrt {113} \\
$
And now we know that by trigonometric ratio,
$
\sin \theta = \dfrac{p}{h} = \dfrac{8}{{\sqrt {113} }} \\
\cos \theta = \dfrac{b}{h} = \dfrac{7}{{\sqrt {113} }} \\
$
For (i)
$\dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}}$
We have ${a^2} - {b^2} = (a + b)(a - b)$
Similarly,
$
1 - {\sin ^2}\theta = (1 + \sin \theta )(1 - \sin \theta ) \\
1 - {\cos ^2}\theta = (1 + \cos \theta )(1 - \cos \theta ) \\
$
$ \Rightarrow \dfrac{{(1 + \sin \theta )(1 - \sin \theta )}}{{(1 + \cos \theta )(1 - \cos \theta )}} = \dfrac{{1 - {{\sin }^2}\theta }}{{1 - {{\cos }^2}\theta }} = \dfrac{{1 - {{\left( {\dfrac{8}{{\sqrt {113} }}} \right)}^2}}}{{1 - {{\left( {\dfrac{7}{{\sqrt {113} }}} \right)}^2}}} = \dfrac{{(113 - 64)}}{{(113 - 49)}} = \dfrac{{49}}{{64}}$
For (ii)
Given,
$\cot \theta = \dfrac{7}{8}$
We have to find ${\cot ^2}\theta $
${\cot ^2}\theta = {(\cot \theta )^2} = {\left( {\dfrac{7}{8}} \right)^2} = \dfrac{{49}}{{64}}$
Note: Whenever such type of questions are given we can solve it by two way (i) trigonometric ratio (ii) by trigonometric identities
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
