
If $\cos \theta = (\dfrac{1}{2})(a + \dfrac{1}{a})$ then the value of $\cos 3\theta $ is
A. $(\dfrac{1}{8})(a^3 + \dfrac{1}{a^3})$
B. $(\dfrac{3}{2})(a + \dfrac{1}{a})$
C. $(\dfrac{1}{2})(a^3 + \dfrac{1}{a^3})$
D. $(\dfrac{1}{3})(a^3 + \dfrac{1}{a^3})$
Answer
233.1k+ views
Hint: Before we proceed to solve the problem, it is important to know about the trigonometric formula to be used. To solve this question, you could directly use the trigonometric identities. $\cos 3\theta $ is an identity in trigonometry and can be expressed in terms of the $\cos \theta $.
Formula Used:
$\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$
Complete step by step Solution:
We need to find the value of $\cos 3\theta $. This is the multiple-angle formula.
Given that
$\cos \theta = (\dfrac{1}{2})(a + \dfrac{1}{a})$
$\cos 3\theta = \cos \theta (4{\cos ^2}\theta - 3)$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[4 \times {\{ \dfrac{1}{2}(a + \dfrac{1}{a})\} ^2} - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[\dfrac{4}{4}({a^2} + \dfrac{1}{{{a^2}}} + 2) - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})({a^2} + \dfrac{1}{{{a^2}}} - 1]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})({a^3} + \dfrac{1}{{{a^3}}})$ [since ${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$]
Therefore, correct option is C
Note:We can also solve this question by using the double angle formula of cos and then using the trigonometric identities. To solve these types of questions in an untedius way you should know the triple angle formula for both cosine and sine angle. You can solve fastly if you know the formula correctly.
Formula Used:
$\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $
${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$
Complete step by step Solution:
We need to find the value of $\cos 3\theta $. This is the multiple-angle formula.
Given that
$\cos \theta = (\dfrac{1}{2})(a + \dfrac{1}{a})$
$\cos 3\theta = \cos \theta (4{\cos ^2}\theta - 3)$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[4 \times {\{ \dfrac{1}{2}(a + \dfrac{1}{a})\} ^2} - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})[\dfrac{4}{4}({a^2} + \dfrac{1}{{{a^2}}} + 2) - 3]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})(a + \dfrac{1}{a})({a^2} + \dfrac{1}{{{a^2}}} - 1]$
$ \Rightarrow \cos 3\theta = (\dfrac{1}{2})({a^3} + \dfrac{1}{{{a^3}}})$ [since ${x^3} + {y^3} = (x + y)({x^2} + {y^2} - xy)$]
Therefore, correct option is C
Note:We can also solve this question by using the double angle formula of cos and then using the trigonometric identities. To solve these types of questions in an untedius way you should know the triple angle formula for both cosine and sine angle. You can solve fastly if you know the formula correctly.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

