
If $\alpha $ and $\beta $ are different complex number with $\left| \alpha \right| = 1$, then what is $\left| {\dfrac{{\alpha - \beta }}{{1 - \alpha \overline \beta }}} \right|$ equal to?
A. $\left| \beta \right|$
B. 2
C. 1
D. 0
Answer
232.8k+ views
Hint: Here we will use the conjugate of the given complex numbers to solve.
Complete step-by-step answer:
Multiplying by $\overline \alpha $ on numerator and denominator, we get
$\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(1 - \alpha \overline \beta )\overline \alpha }}} \right| = \left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{\overline \alpha - \alpha \overline \alpha \overline \beta }}} \right|$
We know that
$
z.\overline z = {\left| z \right|^2} \\
\overline \alpha \alpha = {\left| \alpha \right|^2} = 1 \\
\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(\overline \alpha - \overline \beta )}}} \right| = \left| {\dfrac{{(\alpha - \beta )}}{{(\overline \alpha - \overline \beta )}}} \right|\left| {\overline \alpha } \right| \\
$
As we know $\left| z \right| = \left| {\overline z } \right|$
Therefore $\left| {\alpha - \beta } \right| = \left| {\overline {\alpha - \beta } } \right|$
So it gets cancel out,
$\left| {\overline \alpha } \right| = \left| \alpha \right| = 1$
Note: For modulus type questions in complex numbers, we have to simplify using conjugate and using property of modulus.
Complete step-by-step answer:
Multiplying by $\overline \alpha $ on numerator and denominator, we get
$\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(1 - \alpha \overline \beta )\overline \alpha }}} \right| = \left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{\overline \alpha - \alpha \overline \alpha \overline \beta }}} \right|$
We know that
$
z.\overline z = {\left| z \right|^2} \\
\overline \alpha \alpha = {\left| \alpha \right|^2} = 1 \\
\left| {\dfrac{{(\alpha - \beta )\overline \alpha }}{{(\overline \alpha - \overline \beta )}}} \right| = \left| {\dfrac{{(\alpha - \beta )}}{{(\overline \alpha - \overline \beta )}}} \right|\left| {\overline \alpha } \right| \\
$
As we know $\left| z \right| = \left| {\overline z } \right|$
Therefore $\left| {\alpha - \beta } \right| = \left| {\overline {\alpha - \beta } } \right|$
So it gets cancel out,
$\left| {\overline \alpha } \right| = \left| \alpha \right| = 1$
Note: For modulus type questions in complex numbers, we have to simplify using conjugate and using property of modulus.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

