
If $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ , $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$ then 5A-3B-2C is equal to ?
A . $\left( \begin{matrix}
8 & 20 \\
7 & 9 \\
\end{matrix} \right)$
B. $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
C. $\left( \begin{matrix}
-8 & 20 \\
-7 & 9 \\
\end{matrix} \right)$
D. $\left( \begin{matrix}
8 & 7 \\
-20 & -9 \\
\end{matrix} \right)$
Answer
233.1k+ views
Hint:In this question, we are given the matrix A, B, and C and we have to find the value of 5A-3B-2C. To solve this, first, we multiply 5 with matrix A, then 3 with matrix B, and 2 with matrix C. After multiplying them, we add and subtract the terms and get the desired result and choose the correct option.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ and $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of 5A-3B-2C
First, we multiply 5 with matrix A
5A = 5$\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$
5A = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$
Now we multiply 3 with matrix B
3B = 3$\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$
3B = $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$
Now we multiply 2 with matrix C
2C = 2$\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
2C = $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
Now we add and subtract the matrices according to our given equation.
Now 5A-3B-2C = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5-(-3)-0 & -10-12-(-2) \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5+3 & -10-12+2 \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
Simplifying further, we get
5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Thus the value of 5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Complete step by step Solution:
Given $A=\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$ , $B=\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$ and $C=\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
All the matrices are of $2\times 2$ order.
We have to find the value of 5A-3B-2C
First, we multiply 5 with matrix A
5A = 5$\left( \begin{matrix}
1 & -2 \\
3 & 0 \\
\end{matrix} \right)$
5A = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$
Now we multiply 3 with matrix B
3B = 3$\left( \begin{matrix}
-1 & 4 \\
2 & 3 \\
\end{matrix} \right)$
3B = $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$
Now we multiply 2 with matrix C
2C = 2$\left( \begin{matrix}
0 & -1 \\
1 & 0 \\
\end{matrix} \right)$
2C = $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
Now we add and subtract the matrices according to our given equation.
Now 5A-3B-2C = $\left( \begin{matrix}
5 & -10 \\
15 & 0 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
-3 & 12 \\
6 & 9 \\
\end{matrix} \right)$ - $\left( \begin{matrix}
0 & -2 \\
2 & 0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5-(-3)-0 & -10-12-(-2) \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
5A-3B-2C = $\left( \begin{matrix}
5+3 & -10-12+2 \\
15-6-2 & 0-9-0 \\
\end{matrix} \right)$
Simplifying further, we get
5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Thus the value of 5A-3B-2C = $\left( \begin{matrix}
8 & -20 \\
7 & -9 \\
\end{matrix} \right)$
Therefore, the correct option is (B).
Note: Keep in mind before adding and subtracting any matrices that they have an equal number of columns and rows to be added. As the given matrices are of order $2\times 2$, so we can add it simply. Similarly we can add a $2\times 3$ matrix with a $2\times 3$ matrix or $3\times 3$ matrix with $3\times 3$ matrix. However, we cannot add $2\times 3$ matrix with a $3\times 2$ matrix. Similarly, we cannot add $2\times 2$ matrix with a $3\times 3$ matrix. The order in which we add the matrix is not important because the addition of two matrices is commutative.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

