
If A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ then ${{A}^{n}}$ is equal to $[n\in N]$
A . $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
B . $\left[ \begin{matrix}
n & n \\
0 & n \\
\end{matrix} \right]$
C . $\left[ \begin{matrix}
n & 1 \\
0 & 1 \\
\end{matrix} \right]$
D . none of these
Answer
233.1k+ views
Hint: We are given a matrix and we have to find the n terms of that matrix. We know a square matrix is a matrix which has same number of rows and columns. First we find the square of matrix. To Find the square of A we multiply A with A and after simplifying it , we get the value of square of matrix A and similary we find the cube of A by multiplying square of A with A then by comparing the values, we find the ${{A}^{n}}$.
Complete Step- by- Step Solution:
We have given the matrix A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
First we find the matrix ${{A}^{2}}$
We will now perform matrix multiplication
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
[1\times 1]+[1\times 0] & [1\times 1]+[1\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$
Now we find the ${{A}^{3}}$
For this we multiply ${{A}^{2}}$with A
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{3}}$= $\left[ \begin{matrix}
[1\times 1]+[2\times 0] & [1\times 1]+[2\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]$
Here we observe a pattern. Whenever we multiply the terms, all the values remains same except first row and second column value. So there we generalize the value of ${{A}^{n}}$
Now we find the value of ${{A}^{n}}$
${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Hence the value of ${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Thus, Option (A) is correct.
Note: Students must take care while multiplying the two matrices. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. When we want to multiply the matrices, then the parts of the rows in first matrix are multiplied with the columns in the second matrix.
Complete Step- by- Step Solution:
We have given the matrix A = $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
First we find the matrix ${{A}^{2}}$
We will now perform matrix multiplication
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$ $\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{2}}$= $\left[ \begin{matrix}
[1\times 1]+[1\times 0] & [1\times 1]+[1\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{2}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$
Now we find the ${{A}^{3}}$
For this we multiply ${{A}^{2}}$with A
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]$$\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]$
${{A}^{3}}$= $\left[ \begin{matrix}
[1\times 1]+[2\times 0] & [1\times 1]+[2\times 1] \\
[0\times 1]+[1\times 0] & [0\times 1]+[1\times 1] \\
\end{matrix} \right]$
Simplifying the above equation, we get
${{A}^{3}}$= $\left[ \begin{matrix}
1 & 3 \\
0 & 1 \\
\end{matrix} \right]$
Here we observe a pattern. Whenever we multiply the terms, all the values remains same except first row and second column value. So there we generalize the value of ${{A}^{n}}$
Now we find the value of ${{A}^{n}}$
${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Hence the value of ${{A}^{n}}$= $\left[ \begin{matrix}
1 & n \\
0 & 1 \\
\end{matrix} \right]$
Thus, Option (A) is correct.
Note: Students must take care while multiplying the two matrices. In Multiplication of matrices, remember that the number of column of first matrix match the number of rows of second matrix. When we want to multiply the matrices, then the parts of the rows in first matrix are multiplied with the columns in the second matrix.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

