
If \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\] , \[B = \left( {adj A} \right)\], and \[C = 5A\]. Then find the value of \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\].
A. 5
B. \[25\]
C. \[ - 1\]
D. 1
E. \[125\]
Answer
232.8k+ views
Hint: First, calculate the determinant of the given \[3 \times 3\] matrix \[A\]. Simplify the required expression by using the given equations. Then apply the properties of the determinant of the matrix and solve it to get the required answer.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The determinant of a scalar \[m\] times a matrix \[A\] of order \[n\] is: \[\left| {mA} \right| = {m^n}\left| A \right|\]
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[\left| {adj\left( {adj A} \right)} \right| = \left| {{{\left| A \right|}^{n - 2}}A} \right| = {\left( {{{\left| A \right|}^{n - 2}}} \right)^n}\left| A \right|\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\], \[B = \left( {adj A} \right)\], and \[C = 5A\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {2 \times 0 - 1 \times \left( { - 3} \right)} \right) - \left( { - 1} \right)\left( {0 \times 0 - 2 \times \left( { - 3} \right)} \right) + 1\left( {0 \times 1 - 2 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( 3 \right) + 1\left( 6 \right) + 1\left( { - 4} \right)\]
\[ \Rightarrow \left| A \right| = 3 + 6 - 4\]
\[ \Rightarrow \left| A \right| = 5\]
Now solve the required expression \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\] by using the given equations \[B = \left( {adj A} \right)\], and \[C = 5A\].
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {adj \left( {adj A} \right)} \right|}}{{\left| {5A} \right|}}\]
Use the properties for the determinant.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {{{\left| A \right|}^{n - 2}}A} \right|}}{{{5^n}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{n - 2}}} \right)}^n}\left| A \right|}}{{{5^n}\left| A \right|}}\]
Here, the order of the square matrix is 3.
Then,
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{3 - 2}}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^1}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left| A \right|}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
Now substitute the value of the determinant in the above equation.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{5^3} \times 5}}{{{5^3} \times 5}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = 1\]
Hence the correct option is D.
Note: Students should keep in mind that the adjoint matrix of any matrix is the transpose of its cofactor matrix. While solving the questions related to the properties of the adjoint matrix, students can make note of the following important adjoint properties:
\[A\left( {adj A} \right) = \left( {adj A} \right)A = \left| A \right|I\]
\[\left| {adj A} \right| = {\left| A \right|^{n - 1}}\], where \[n\] is the order of the square matrix
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[adj\left( {AB} \right) = adj\left( B \right)adj\left( A \right)\]
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The determinant of a scalar \[m\] times a matrix \[A\] of order \[n\] is: \[\left| {mA} \right| = {m^n}\left| A \right|\]
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[\left| {adj\left( {adj A} \right)} \right| = \left| {{{\left| A \right|}^{n - 2}}A} \right| = {\left( {{{\left| A \right|}^{n - 2}}} \right)^n}\left| A \right|\]
Complete step by step solution:
The given matrices are \[A = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&1\\0&2&{ - 3}\\2&1&0\end{array}} \right]\], \[B = \left( {adj A} \right)\], and \[C = 5A\].
Let’s calculate the determinant of the given matrix \[A\].
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 1\left( {2 \times 0 - 1 \times \left( { - 3} \right)} \right) - \left( { - 1} \right)\left( {0 \times 0 - 2 \times \left( { - 3} \right)} \right) + 1\left( {0 \times 1 - 2 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 1\left( 3 \right) + 1\left( 6 \right) + 1\left( { - 4} \right)\]
\[ \Rightarrow \left| A \right| = 3 + 6 - 4\]
\[ \Rightarrow \left| A \right| = 5\]
Now solve the required expression \[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}}\] by using the given equations \[B = \left( {adj A} \right)\], and \[C = 5A\].
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {adj \left( {adj A} \right)} \right|}}{{\left| {5A} \right|}}\]
Use the properties for the determinant.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{\left| {{{\left| A \right|}^{n - 2}}A} \right|}}{{{5^n}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{n - 2}}} \right)}^n}\left| A \right|}}{{{5^n}\left| A \right|}}\]
Here, the order of the square matrix is 3.
Then,
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^{3 - 2}}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left( {{{\left| A \right|}^1}} \right)}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
\[ \Rightarrow \dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{{\left| A \right|}^3}\left| A \right|}}{{{5^3}\left| A \right|}}\]
Now substitute the value of the determinant in the above equation.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = \dfrac{{{5^3} \times 5}}{{{5^3} \times 5}}\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left| {adj B} \right|}}{{\left| C \right|}} = 1\]
Hence the correct option is D.
Note: Students should keep in mind that the adjoint matrix of any matrix is the transpose of its cofactor matrix. While solving the questions related to the properties of the adjoint matrix, students can make note of the following important adjoint properties:
\[A\left( {adj A} \right) = \left( {adj A} \right)A = \left| A \right|I\]
\[\left| {adj A} \right| = {\left| A \right|^{n - 1}}\], where \[n\] is the order of the square matrix
\[adj\left( {adj A} \right) = {\left| A \right|^{n - 2}}A\]
\[adj\left( {AB} \right) = adj\left( B \right)adj\left( A \right)\]
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

