
If $A$ is unimodular, then which of the following matrices are unimodular?
(a) $-A$
(b) ${{A}^{-1}}$
(c) $adj\left( A \right)$
(d) $\omega A$, where $\omega $ is cube root of unity
Answer
232.8k+ views
Hint: A matrix $A$ is said to be unimodular if the determinant of this matrix $\left| A \right|$ is equal to +1 or -1. Check each option and use the properties of matrices and determinants to find the determinant of the matrix given in each option.
Before proceeding with the question, we must know the formulas and the definitions that will be required to solve this question.
For a matrix $A$, if the determinant of this matrix $\left| A \right|$ is equal to +1 or -1, then it is said to be unimodular. In the question, it is given that$A$ is unimodular. This means that,
$\left| A \right|=1$ or $\left| A \right|=-1...........\left( 1 \right)$
In matrices, for a matrix $A$ of any order n, we have some formulas and properties,
$\left| -kA \right|={{\left( -k \right)}^{n}}\left| A \right|..................\left( 2 \right)$, here k is a constant.
$\begin{align}
& {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right) \\
& \Rightarrow \left| {{A}^{-1}} \right|=\left| \dfrac{1}{\left| A \right|}adj\left( A \right) \right| \\
& \Rightarrow \left| {{A}^{-1}} \right|=\left| \dfrac{1}{\left| A \right|} \right|\left| adj\left( A \right) \right| \\
& \Rightarrow \left| {{A}^{-1}} \right|=\dfrac{1}{\left| A \right|}\left| adj\left( A \right) \right|..................\left( 3 \right) \\
\end{align}$
If we take the adjoint of a matrix, the determinant of the adjoint of that matrix is equal to the determinant of that matrix.
$\Rightarrow \left| adj\left( A \right) \right|=\left| A \right|................\left( 4 \right)$
In this question, we are given a matrix $A$ which is a unimodular matrix. From definition $\left( 1 \right)$, we can say that,
$\left| A \right|=+1$ or $\left| A \right|=-1$
Now, we are required to check which of the options contains a unimodular matrix.
(a) To check whether $-A$ is unimodular or not, let us find it’s determinant. The determinant of $-A$ is $\left| -A \right|$. Substituting k=-1 in equation $\left( 2 \right)$, we get,
$\left| -A \right|={{\left( -1 \right)}^{n}}\left| A \right|$ , where n is the order of matrix $A$
Since n is the order of the matrix, it is an integer. Also, we have found that $\left| A \right|=+1$ or $\left| A \right|=-1$. So, we can say that,
$\left| -A \right|=+1$ or $\left| -A \right|=-1$
Hence, $-A$ is a unimodular matrix.
(b) Let us find the determinant of ${{A}^{-1}}$ i.e. $\left| {{A}^{-1}} \right|$. From formula $\left( 3 \right)$, we have,
$\left| {{A}^{-1}} \right|=\dfrac{1}{\left| A \right|}\left| adj\left( A \right) \right|$
We have found that $\left| A \right|=+1$ or $\left| A \right|=-1$. Also, from formula $\left( 4 \right)$, we have $\left| adj\left( A \right) \right|=\left| A \right|$. So, we can say that $\left| adj\left( A \right) \right|=+1$ or $\left| adj\left( A \right) \right|=-1$. Substituting these values of $\left| adj\left( A \right) \right|$ and $\left| A \right|$, we get,
$\left| {{A}^{-1}} \right|=+1$ or $\left| {{A}^{-1}} \right|=-1$
Hence, ${{A}^{-1}}$ is a unimodular matrix.
(c) Let us find the determinant of $adj\left( A \right)$ i.e. $\left| adj\left( A \right) \right|$. From formula $\left( 4 \right)$, we have $\left| adj\left( A \right) \right|=\left| A \right|$. So, we can say that $\left| adj\left( A \right) \right|=+1$ or $\left| adj\left( A \right) \right|=-1$.
Hence, $adj\left( A \right)$ is a unimodular matrix.
(d) Let us find the determinant of $\omega A$. The determinant of $\omega A$ is $\left| \omega A \right|$. Substituting $k=\omega $ in equation $\left( 2 \right)$, we get,
$\left| \omega A \right|={{\left( \omega \right)}^{n}}\left| A \right|$ , where n is the order of matrix $A$
We have found that $\left| A \right|=+1$ or $\left| A \right|=-1$.
In complex numbers, we have ${{\omega }^{n}}=1$ only when n is a multiple of 3. So, we can say that \[\left| \omega A \right|=1\] or \[\left| \omega A \right|=-1\] only when n is a multiple of 3.
Hence, \[\omega A\] is unimodular only if n is a multiple of 3.
Hence, the answer is (a), (b), (c).
Note: There is a possibility that one may include option (d) as the correct answer. In the question, it is asked that “which of the following is unimodular?”. Since the matrix in option (d) is not always unimodular, we will not include option (d) in our answer.
Before proceeding with the question, we must know the formulas and the definitions that will be required to solve this question.
For a matrix $A$, if the determinant of this matrix $\left| A \right|$ is equal to +1 or -1, then it is said to be unimodular. In the question, it is given that$A$ is unimodular. This means that,
$\left| A \right|=1$ or $\left| A \right|=-1...........\left( 1 \right)$
In matrices, for a matrix $A$ of any order n, we have some formulas and properties,
$\left| -kA \right|={{\left( -k \right)}^{n}}\left| A \right|..................\left( 2 \right)$, here k is a constant.
$\begin{align}
& {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right) \\
& \Rightarrow \left| {{A}^{-1}} \right|=\left| \dfrac{1}{\left| A \right|}adj\left( A \right) \right| \\
& \Rightarrow \left| {{A}^{-1}} \right|=\left| \dfrac{1}{\left| A \right|} \right|\left| adj\left( A \right) \right| \\
& \Rightarrow \left| {{A}^{-1}} \right|=\dfrac{1}{\left| A \right|}\left| adj\left( A \right) \right|..................\left( 3 \right) \\
\end{align}$
If we take the adjoint of a matrix, the determinant of the adjoint of that matrix is equal to the determinant of that matrix.
$\Rightarrow \left| adj\left( A \right) \right|=\left| A \right|................\left( 4 \right)$
In this question, we are given a matrix $A$ which is a unimodular matrix. From definition $\left( 1 \right)$, we can say that,
$\left| A \right|=+1$ or $\left| A \right|=-1$
Now, we are required to check which of the options contains a unimodular matrix.
(a) To check whether $-A$ is unimodular or not, let us find it’s determinant. The determinant of $-A$ is $\left| -A \right|$. Substituting k=-1 in equation $\left( 2 \right)$, we get,
$\left| -A \right|={{\left( -1 \right)}^{n}}\left| A \right|$ , where n is the order of matrix $A$
Since n is the order of the matrix, it is an integer. Also, we have found that $\left| A \right|=+1$ or $\left| A \right|=-1$. So, we can say that,
$\left| -A \right|=+1$ or $\left| -A \right|=-1$
Hence, $-A$ is a unimodular matrix.
(b) Let us find the determinant of ${{A}^{-1}}$ i.e. $\left| {{A}^{-1}} \right|$. From formula $\left( 3 \right)$, we have,
$\left| {{A}^{-1}} \right|=\dfrac{1}{\left| A \right|}\left| adj\left( A \right) \right|$
We have found that $\left| A \right|=+1$ or $\left| A \right|=-1$. Also, from formula $\left( 4 \right)$, we have $\left| adj\left( A \right) \right|=\left| A \right|$. So, we can say that $\left| adj\left( A \right) \right|=+1$ or $\left| adj\left( A \right) \right|=-1$. Substituting these values of $\left| adj\left( A \right) \right|$ and $\left| A \right|$, we get,
$\left| {{A}^{-1}} \right|=+1$ or $\left| {{A}^{-1}} \right|=-1$
Hence, ${{A}^{-1}}$ is a unimodular matrix.
(c) Let us find the determinant of $adj\left( A \right)$ i.e. $\left| adj\left( A \right) \right|$. From formula $\left( 4 \right)$, we have $\left| adj\left( A \right) \right|=\left| A \right|$. So, we can say that $\left| adj\left( A \right) \right|=+1$ or $\left| adj\left( A \right) \right|=-1$.
Hence, $adj\left( A \right)$ is a unimodular matrix.
(d) Let us find the determinant of $\omega A$. The determinant of $\omega A$ is $\left| \omega A \right|$. Substituting $k=\omega $ in equation $\left( 2 \right)$, we get,
$\left| \omega A \right|={{\left( \omega \right)}^{n}}\left| A \right|$ , where n is the order of matrix $A$
We have found that $\left| A \right|=+1$ or $\left| A \right|=-1$.
In complex numbers, we have ${{\omega }^{n}}=1$ only when n is a multiple of 3. So, we can say that \[\left| \omega A \right|=1\] or \[\left| \omega A \right|=-1\] only when n is a multiple of 3.
Hence, \[\omega A\] is unimodular only if n is a multiple of 3.
Hence, the answer is (a), (b), (c).
Note: There is a possibility that one may include option (d) as the correct answer. In the question, it is asked that “which of the following is unimodular?”. Since the matrix in option (d) is not always unimodular, we will not include option (d) in our answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

